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Figure: 3D image of a protein

(Parhizkar, 2012) Figure: Example of a sensor network

(Cucuringu et al., 2012)
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Full EDG Problem |

o Let {px}7_; C R for some d < n, and define P € R™*d

. pl; -
p—| P |, P.1-0
S
@ The squared distance between p; and p; is
d? = [lpi — pjll3 = p/ pi + P/ P; — 2p] P,
@ Define the Distance Matrix
D = [d3] € R™"
@ One can show rank(D) < d + 2.
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Full EDG Problem Il

@ Can also define the Gram Matrix
X=PP" =[p/p]eR™"

o Notice that for orthogonal O € R¥*9 that PPT = (PO)(PO)" = X,
so P — X not injective. Additionally, notice that rank(X) < d

@ Interested in the problem where we have access to D and want to
compute P up to orthogonal transformation.

@ Closed form relationships between D and X exist!

D = diag(X)17 + 1diag(X)" — 2X (1)
xz—% <I—,1111T>D<I—,1711T> (2)
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Multidimensional Scaling (MDS)

Using (2), we can compute P as follows from D:

dxd dxn
nxd X —N—
—_—— T
7"' —
I 17 [ i
X = u; ur Uy .
| | Ad :
T
-
1/2 1/2 —u; —
RN % e
= |[u1 U2 uy .
| | | 1/2 1/2 :
R g Ad } Ad —u;—
P o7
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Procrustes Problem

o Let P be a recovered point matrix through MDS, and P be the true
distance. We can align these point clouds by solving

P - PO 3
minimige I IF (3)

@ Can solve through a variational argument and see that, if
PP” = UXVT, then

argmin ||P — PO|[r = VUT (4)
0c0(d)

@ Say we have access to a subset of {pi}ics, and define
Pr=[p]..p[17. Pr=[p]..B]]".

° Can~so|ve 0 =VUT for I5,TP, = UXVT, and then align P with P
via PO.
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Partial EDG Problem |

@ Problem is more interesting when considering a subset Q C [n] x [n]
where if (i,)) € Q, dg is known.

@ Define Pq : R™" — R™" 35 follows:

Pa()= Y (-EjE;j (5)
(ij)e
where (A, B) = Trace(ATB) = >_ijAijBjand Ej = e,-eJT.
e Only L= @ unique entries in D, and D = DT
e For a = (i,j), i <j, if we define E, := Ej; + Ej;, we can rewrite Pq
as

PQ(D) = Z<D7Ea>Ea (6)

a€e

@ Goal becomes, can we reconstruct D from viewing Pq(D)?
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Matrix Completion |

o Given a matrix A € R™" with rank(A) = r < n, lots of repeated
information in entries of A.

e If r =1, need at least 1 entry in each row/column. If sampling at
random, expected number of samples to achieve this is ~ nlog(n)

@ What about matrices like the following?

10 0 11 1
00 0 11 1
(7)
0 0 1 1
coherent incoherent

@ Mathematical notion of entrywise " diffuseness” necessary to exclude
pathological cases
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Matrix Completion |l

o If we wanted to compute the ground truth matrix M, we can define
the following optimization routine

m)}n]iRmize rank(X) subject to Pq(X) = Pa(M) (8)
€ nxn

@ Rank is non-smooth, optimization is combinatorially hard. Replace
rank with a convex surrogate function ||Y|[, = >_"_, o; where o; is
the i-th largest singular value of Y

@ Defining new convex routine yields

m)zn]iRmize IX][« subject to Pq(X) = Pq(M) 9)
e nxn

which has lots of nice convergence guarantees.
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Matrix Completion [l

So why spend time on this if methods exist?
@ Scalability
o Convergence guarantees for non-convex methods
@ Distance matrices do not play nicely with existing methods

@ Have not leveraged knowledge of dimension of point cloud
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Riemannian Approach |

@ Common approach in constrained optimization is if the constraint is
smooth, can consider algorithms as unconstrained gradient descent on
a manifold.

o Algorithmic intuition is that you step in an "allowable” direction on a
manifold (in the tangent space) by some step size, then pull back on
to the manifold

T,84!

Figure: Tangent space of a sphere with a retraction map (Boumal, 2023)
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Riemannian Approach Il

@ In (Wei et al., 2020), the following approach was established. The set
M = {X € R™" | rank(X) = d}

is an embedded manifold in R"*". This allows us to define the
following algorithm.

m)én]iRmize (X — M, Pq(X — M)) subject to rank(X) =d  (10)
e nxn

@ At a point X € M. the tangent space
TxM = {UZ] +Z,VT|Z,,Z, € R™*9} (11)

where X = UZV for U,V € R"¥9.
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Riemannian Approach Il

Using the previous ideas, Wei et al. define the following algorithm

Initialize with Xo = SVD,(Pq(M)) = UgZoV{ =", ojujv]. For
I=0,1,2... do
QO G =Po(X;— M)

_ 1P, Gill%
Q o= (Pr,G;,PaPr,G))

Q@ W, =X, + a/Pr,G,
Q X411 =8SVD,(W))

where T is the tangent space at the /-th iteration and T is the tangent
space at the true solution. Some assumptions on || required to prove
convergence.
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Translating to optimization over Gram matrices

@ We only have access to d,-f for (i,j) € Q.
@ Recall that

di =p/pi+p/p—2p]p;
= Xij + Xjj = Xjj — Xji

The relevant set will be

S={YeR™MY =YTY.-1=0}, dim(S)=1L

o Let a = (i,j) for i < j. Define w, = Ej; + Ejj — Ejj — Ej;. It follows
now that
di = (X, wq) (12)

One can show that {wg }qcr forms a basis for S but (wq,wg) # d4p.
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e Can define dual, or bi-orthogonal, basis {v,, }qe1 such that
<W047V5> = 6115'

o Defining H = [(w,,wg)] € REXL allows us to analytically compute
the dual basis {v,}

Vo =D H_jwy (13)
Bel

@ The structure of the dual basis also allows any Y € S to be
decomposed as

Y = (Y, wo)va = > (Y, va)w, (14)

a€l a€l

@ Using these ideas, we define a new sampling operator R : S — S

Ra() =D (- Wa)Va (15)

a€ef
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Defining Algorithm |

One problem with Rq is that it is not self-adjoint.
Defining the function

f(Y)=(Y =X, Ra(Y — X)) (16)
We can see that
Vyf(Y) = 5(Ra(Y —X) + RA(Y - X)) (17)

But this requires knowledge of R§(X), and

R&() =D () Va)Wa (18)

a€ef

and we don't have access to (X, v,)
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Defining Algorithm ||

One option is to define a self-adjoint surrogate R,Rq as follows:
RaRa() = D (- Wa){Va,vs)ws (19)
a,BEQ
This allows us to define a new objective function

m&n]iRmize (Y = X, RoRa(Y — X)) subject to rank(Y) =r (20)
e nxn

oRa Algorithm

|

Initialize with Xo = EVD,(R§Ra(X)) = UgXoUJ For /=0,1,2... do

Q@ G, = R5Ra(X; - X)
I Pr,GilIZ
0 o= <PT,G,,7'>QP$,G,>

Q@ W, =X+ «a/Pr,G
Q X411 =EVD,(W))

7 = =
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Defining Algorithm 1lI

Another self-adjoint surrogate, Fq, is defined as follows:
Fal) = (o)W (21)
acQ
This allows us to define a new objective function

m&nimize (Y = X, Fa(Y — X)) subject to rank(Y)=r  (22)
ER"XH

Fq Algorithm

Initialize with Xo = EVD,(Fq(X)) = UsZoU{ For / =0,1,2... do

QO G, = Fo(X;— X)
. |Pr, G/ |2
Q = <77T,G/,7IDQ77T,G/)

Q@ W, =X+ «a/Pr,G
Q X;1 =EVD,(W))

v
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Defining Algorithm IV

Alternatively, lose quadratic form interpretation, as no reference in
algorithm to objective function, as follows:

Rq Algorithm
Initialize with Xo = EVD,(Ra(X)) = UgZoUJ For / =0,1,2... do
0 G, = Ra(X, — X)

_ | Pr,Gil|3
Q= (Pr,G1,PoPr, G/)

QW =X+ Oé/Pj]‘,G[
© Xji1 = EVD,(W))

v

Why might we prefer one over the other? Relies on statistical properties of
the respective operators, which is relevant to convergence analysis.
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Convergence Analysis

How does one undertake these types of convergence analysis proofs? Want
contraction in the Frobenius norm.

[Xi41 = X[[F = [[Xj31 — W, + W, — X][¢
< X1 = Wil + |W) = X
< 2[|W; —X|F
= 2[|(X; — a/Pr,Ra(X — X)) — X||r
=2||(Z — a/Pr,Ra)(X; — X)|[¢
< 2||(Pr, — aPr,RaPr,) (X — X) ||
h
+ 2[(Z = Pr,)(X; = X)[|¢

-

h

+ 2Jayl[|Pr,Ra(Z = Pr,)(X; = X)| £

I

Iy is the tricky term!
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Restricted Isometry Property

All convergence results in matrix completion rely on the Restricted
Isometry Property (RIP).
Idea is simple: In expectation, how much do the sampling operators
Ka € {RgRa, Rq, Fa} deviate from the identity (when restricted to T)?
More formally, is

|PraPr — cPr|| (23)
small for some constant ¢ > 07

Theorem (RIP of Rgq)

Suppose €1 is a set of entries of size m sampled independently and
uniformly with replacement. Then for all § > 1

L
H_P’H‘RQP’H‘ —Pr|| <
m

1
2

with probability 1 — 2n'=? provided that m > Cfnlog(n) for some
C = 0(1)
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Figure: All results captured using RgRq algorithm
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Results I

Table: Relative recovery error | X — X,ev||£/||X||£ between the recovered Gram
matrix and the true Gram matrix averaged over 20 trials using the Rq algorithm.

Datacet T 5% 3% 2% 1%
Sphere (3D, n = 1002) 1.5e-07 | 3.0e-06 | 8.3e-07 | 0.46
U.S. Cities (2D, n =2920) | 5.9¢-08 | 1.1e-07 | 2.0e-07 | 7.3e-07
Cow (3D, n=2601) 6.1e-08 | 1.3e-07 | 2.3e-07 | 8.9e-07
Swiss Roll (3D, n =2048) | 8.1e-08 | 1.3e-07 | 3.0e-06 | 0.0035
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The End
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