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Motivation

Figure: 3D image of a protein
(Parhizkar, 2012)

Figure: Example of a sensor network
(Cucuringu et al., 2012)
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Full EDG Problem I

Let {pk}nk=1 ⊂ Rd for some d < n, and define P ∈ Rn×d

P =


— pT1 —
— pT2 —

...
— pTn —

 , P · 1 = 0

The squared distance between pi and pj is

d2
ij = ∥pi − pj∥22 = pTi pi + pTj pj − 2pTi pj

Define the Distance Matrix

D = [d2
ij ] ∈ Rn×n

One can show rank(D) ≤ d + 2.
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Full EDG Problem II

Can also define the Gram Matrix

X = PPT = [pTi pj ] ∈ Rn×n

Notice that for orthogonal O ∈ Rd×d that PPT = (PO)(PO)T = X,
so P 7→ X not injective. Additionally, notice that rank(X) ≤ d

Interested in the problem where we have access to D and want to
compute P up to orthogonal transformation.

Closed form relationships between D and X exist!

D = diag(X)1T + 1diag(X)T − 2X (1)

X = −1

2

(
I− 1

n
11T

)
D

(
I− 1

n
11T

)
(2)
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Multidimensional Scaling (MDS)

Using (2), we can compute P as follows from D:

X =

n×d︷ ︸︸ ︷ | | |
u1 u2 . . . ud
| | |


d×d︷ ︸︸ ︷λ1

. . .

λd


d×n︷ ︸︸ ︷

— uT1 —
— uT2 —

...
— uTd —



=

 | | |
u1 u2 . . . ud
| | |


λ

1/2
1

. . .

λ
1/2
d


︸ ︷︷ ︸

P

λ
1/2
1

. . .

λ
1/2
d



— uT1 —
— uT2 —

...
— uTd —


︸ ︷︷ ︸

PT
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Procrustes Problem

Let P̃ be a recovered point matrix through MDS, and P be the true
distance. We can align these point clouds by solving

minimize
O∈O(d)

∥P− P̃O∥F (3)

Can solve through a variational argument and see that, if
P̃PT = UΣVT , then

argmin
O∈O(d)

∥P− P̃O∥F = VUT (4)

Say we have access to a subset of {pi}i∈I , and define
PI = [pTi1 ...p

T
ij
]T , P̃I = [p̃Ti1 ...p̃

T
ij
]T .

Can solve O = VUT for P̃T
I PI = UΣVT , and then align P̃ with P

via P̃O.
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Partial EDG Problem I

Problem is more interesting when considering a subset Ω ⊂ [n]× [n]
where if (i , j) ∈ Ω, d2

ij is known.

Define PΩ : Rn×n → Rn×n as follows:

PΩ(·) =
∑

(i ,j)∈Ω

⟨·,Eij⟩Eij (5)

where ⟨A,B⟩ = Trace(ATB) =
∑

i ,j AijBij and Eij = eie
T
j .

Only L = n(n−1)
2 unique entries in D, and D = DT

For α = (i , j), i < j , if we define Eα := Eij + Eji , we can rewrite PΩ

as
PΩ(D) =

∑
α∈Ω

⟨D,Eα⟩Eα (6)

Goal becomes, can we reconstruct D from viewing PΩ(D)?
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Matrix Completion I

Given a matrix A ∈ Rn×n with rank(A) = r ≪ n, lots of repeated
information in entries of A.

If r = 1, need at least 1 entry in each row/column. If sampling at
random, expected number of samples to achieve this is ≈ n log(n)

What about matrices like the following?
1 0 . . . 0
0 0 . . . 0
...

. . .

0 0


︸ ︷︷ ︸

coherent


1 1 . . . 1
1 1 . . . 1
...

. . .

1 1


︸ ︷︷ ︸

incoherent

(7)

Mathematical notion of entrywise ”diffuseness” necessary to exclude
pathological cases
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Matrix Completion II

If we wanted to compute the ground truth matrix M, we can define
the following optimization routine

minimize
X∈Rn×n

rank(X) subject to PΩ(X) = PΩ(M) (8)

Rank is non-smooth, optimization is combinatorially hard. Replace
rank with a convex surrogate function ∥Y∥⋆ =

∑n
i=1 σi where σi is

the i-th largest singular value of Y

Defining new convex routine yields

minimize
X∈Rn×n

∥X∥⋆ subject to PΩ(X) = PΩ(M) (9)

which has lots of nice convergence guarantees.
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Matrix Completion III

So why spend time on this if methods exist?

Scalability

Convergence guarantees for non-convex methods

Distance matrices do not play nicely with existing methods

Have not leveraged knowledge of dimension of point cloud
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Riemannian Approach I

Common approach in constrained optimization is if the constraint is
smooth, can consider algorithms as unconstrained gradient descent on
a manifold.

Algorithmic intuition is that you step in an ”allowable” direction on a
manifold (in the tangent space) by some step size, then pull back on
to the manifold

Figure: Tangent space of a sphere with a retraction map (Boumal, 2023)
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Riemannian Approach II

In (Wei et al., 2020), the following approach was established. The set

M := {X ∈ Rn×n | rank(X) = d}

is an embedded manifold in Rn×n. This allows us to define the
following algorithm.

minimize
X∈Rn×n

⟨X−M,PΩ(X−M)⟩ subject to rank(X) = d (10)

At a point X ∈ M. the tangent space

TXM = {UZT
1 + Z2V

T |Z1,Z2 ∈ Rn×d} (11)

where X = UΣV for U,V ∈ Rn×d .
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Riemannian Approach III

Using the previous ideas, Wei et al. define the following algorithm

RGrad

Initialize with X0 = SVDr (PΩ(M)) = U0Σ0VT
0 =

∑r
ı=1 σiuiv

T
i . For

l = 0, 1, 2... do

1 Gl = PΩ(Xl −M)

2 αl =
∥PTlGl∥2F

⟨PTlGl ,PΩPTlGl ⟩

3 Wl = Xl + αlPTl
Gl

4 Xl+1 = SVDr (Wl)

where Tl is the tangent space at the l-th iteration and T is the tangent
space at the true solution. Some assumptions on |Ω| required to prove
convergence.
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Translating to optimization over Gram matrices

We only have access to d2
ij for (i , j) ∈ Ω.

Recall that

d2
ij = pTi pi + pTj pj − 2pTi pj

= Xii + Xjj − Xij − Xji

The relevant set will be

S = {Y ∈ Rn×n|Y = YT ,Y · 1 = 0}, dim(S) = L

Let α = (i , j) for i < j . Define wα = Eii + Ejj − Eij − Eji . It follows
now that

d2
ij = ⟨X,wα⟩ (12)

One can show that {wα}α∈I forms a basis for S but ⟨wα,wβ⟩ ≠ δαβ.
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Dual Basis

Can define dual, or bi-orthogonal, basis {vα}α∈I such that
⟨wα, vβ⟩ = δαβ.

Defining H = [⟨wα,wβ⟩] ∈ RL×L allows us to analytically compute
the dual basis {vα}

vα =
∑
β∈I

H−1
αβwβ (13)

The structure of the dual basis also allows any Y ∈ S to be
decomposed as

Y =
∑
α∈I

⟨Y,wα⟩vα =
∑
α∈I

⟨Y, vα⟩wα (14)

Using these ideas, we define a new sampling operator RΩ : S → S

RΩ(·) =
∑
α∈Ω

⟨·,wα⟩vα (15)
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Defining Algorithm I

One problem with RΩ is that it is not self-adjoint.
Defining the function

f (Y) = ⟨Y − X,RΩ(Y − X)⟩ (16)

We can see that

∇Yf (Y) =
1

2
(RΩ(Y − X) +R⋆

Ω(Y − X)) (17)

But this requires knowledge of R⋆
Ω(X), and

R⋆
Ω(·) =

∑
α∈Ω

⟨·, vα⟩wα (18)

and we don’t have access to ⟨X, vα⟩
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Defining Algorithm II

One option is to define a self-adjoint surrogate R⋆
ΩRΩ as follows:

R⋆
ΩRΩ(·) =

∑
α,β∈Ω

⟨·,wα⟩⟨vα, vβ⟩wβ (19)

This allows us to define a new objective function

minimize
Y∈Rn×n

⟨Y − X,R⋆
ΩRΩ(Y − X)⟩ subject to rank(Y) = r (20)

R⋆
ΩRΩ Algorithm

Initialize with X0 = EVDr (R⋆
ΩRΩ(X)) = U0Σ0UT

0 For l = 0, 1, 2... do

1 Gl = R⋆
ΩRΩ(Xl − X)

2 αl =
∥PTlGl∥2F

⟨PTlGl ,PΩPTlGl ⟩

3 Wl = Xl + αlPTl
Gl

4 Xl+1 = EVDr (Wl)
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Defining Algorithm III

Another self-adjoint surrogate, FΩ, is defined as follows:

FΩ(·) =
∑
α∈Ω

⟨·,wα⟩wα (21)

This allows us to define a new objective function

minimize
Y∈Rn×n

⟨Y − X,FΩ(Y − X)⟩ subject to rank(Y) = r (22)

FΩ Algorithm

Initialize with X0 = EVDr (FΩ(X)) = U0Σ0UT
0 For l = 0, 1, 2... do

1 Gl = FΩ(Xl − X)

2 αl =
∥PTlGl∥2F

⟨PTlGl ,PΩPTlGl ⟩

3 Wl = Xl + αlPTl
Gl

4 Xl+1 = EVDr (Wl)

Chandler Smith (Tufts) RieEDG April 25, 2024 19 / 26



Defining Algorithm IV

Alternatively, lose quadratic form interpretation, as no reference in
algorithm to objective function, as follows:

RΩ Algorithm

Initialize with X0 = EVDr (RΩ(X)) = U0Σ0UT
0 For l = 0, 1, 2... do

1 Gl = RΩ(Xl − X)

2 αl =
∥PTlGl∥2F

⟨PTlGl ,PΩPTlGl ⟩

3 Wl = Xl + αlPTl
Gl

4 Xl+1 = EVDr (Wl)

Why might we prefer one over the other? Relies on statistical properties of
the respective operators, which is relevant to convergence analysis.
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Convergence Analysis

How does one undertake these types of convergence analysis proofs? Want
contraction in the Frobenius norm.

∥Xl+1 − X∥F = ∥Xl+1 −Wl +Wl − X∥F
≤ ∥Xl+1 −Wl∥F + ∥Wl − X∥F

≤ 2∥Wl − X∥F
= 2∥(Xl − αlPTl

RΩ(X− Xl))− X∥F
= 2∥(I − αlPTl

RΩ)(Xl − X)∥F
≤ 2∥(PTl

− αlPTl
RΩPTl

)(Xl − X)∥F︸ ︷︷ ︸
I1

+ 2∥(I − PTl
)(Xl − X)∥F︸ ︷︷ ︸
I2

+ 2|αl |∥PTl
RΩ(I − PTl

)(Xl − X)∥F︸ ︷︷ ︸
I3

I1 is the tricky term!
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Restricted Isometry Property

All convergence results in matrix completion rely on the Restricted
Isometry Property (RIP).
Idea is simple: In expectation, how much do the sampling operators
KΩ ∈ {R⋆

ΩRΩ,RΩ,FΩ} deviate from the identity (when restricted to T)?
More formally, is

∥PTKΩPT − cPT∥ (23)

small for some constant c > 0?

Theorem (RIP of RΩ)

Suppose Ω is a set of entries of size m sampled independently and
uniformly with replacement. Then for all β > 1∥∥∥∥ L

m
PTRΩPT − PT

∥∥∥∥ ≤ 1

2
(24)

with probability 1− 2n1−β provided that m ≥ Cβn log(n) for some
C = O(1)

Chandler Smith (Tufts) RieEDG April 25, 2024 22 / 26



Results I

Figure: All results captured using R⋆
ΩRΩ algorithm
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Results II

Table: Relative recovery error ∥X− Xrev∥F/∥X∥F between the recovered Gram
matrix and the true Gram matrix averaged over 20 trials using the RΩ algorithm.

Dataset
γ

5% 3% 2% 1%

Sphere (3D, n = 1002) 1.5e-07 3.0e-06 8.3e-07 0.46

U.S. Cities (2D, n = 2920) 5.9e-08 1.1e-07 2.0e-07 7.3e-07

Cow (3D, n = 2601) 6.1e-08 1.3e-07 2.3e-07 8.9e-07

Swiss Roll (3D, n = 2048) 8.1e-08 1.3e-07 3.0e-06 0.0035
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The End
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