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Motivation

Figure: 3D image of a protein
(Parhizkar, 2012)

Figure: Example of a sensor network
(Cucuringu et al., 2012)
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Full EDG Problem I

Let {pk}nk=1 ⊂ Rd for some d < n, and define P ∈ Rn×d

P =


— pT1 —
— pT2 —

...
— pTn —

 , P · 1 = 0

The squared distance between pi and pj is

d2
ij = ∥pi − pj∥22 = pTi pi + pTj pj − 2pTi pj

Define the Distance Matrix

D = [d2
ij ] ∈ Rn×n

One can show rank(D) ≤ d + 2.
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Full EDG Problem II

Can also define the Gram Matrix

X = PPT = [pTi pj ] ∈ Rn×n

Notice that for orthogonal O ∈ Rd×d that PPT = (PO)(PO)T = X,
so P 7→ X not injective. Additionally, notice that rank(X) ≤ d

Interested in the problem where we have access to D and want to
compute P up to orthogonal transformation.

Closed form relationships between D and X exist!

D = diag(X)1T + 1diag(X)T − 2X (1)

X = −1

2

(
I− 1

n
11T

)
D

(
I− 1

n
11T

)
(2)
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Multidimensional Scaling (MDS)

Using (2), we can compute P as follows from D:

X =

n×d︷ ︸︸ ︷ | | |
u1 u2 . . . ud
| | |


d×d︷ ︸︸ ︷λ1

. . .

λd


d×n︷ ︸︸ ︷

— uT1 —
— uT2 —

...
— uTd —



=

 | | |
u1 u2 . . . ud
| | |


λ

1/2
1

. . .

λ
1/2
d


︸ ︷︷ ︸

P

λ
1/2
1

. . .

λ
1/2
d



— uT1 —
— uT2 —

...
— uTd —


︸ ︷︷ ︸

PT
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Procrustes Problem

Let P̃ be a recovered point matrix through MDS, and P be the true
distance. We can align these point clouds by solving

minimize
O∈O(d)

∥P− P̃O∥F (3)

Can solve through a variational argument and see that, if
P̃PT = UΣVT , then

argmin
O∈O(d)

∥P− P̃O∥F = VUT (4)

Say we have access to a subset of {pi}i∈I , and define
PI = [pTi1 ...p

T
ij
]T , P̃I = [p̃Ti1 ...p̃

T
ij
]T .

Can solve O = VUT for P̃T
I PI = UΣVT , and then align P̃ with P

via P̃O.
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Partial EDG Problem I

Problem is more interesting when considering a subset Ω ⊂ [n]× [n]
where if (i , j) ∈ Ω, d2

ij is known.

Define PΩ : Rn×n → Rn×n as follows:

PΩ(·) =
∑

(i ,j)∈Ω

⟨·,Eij⟩Eij (5)

where ⟨A,B⟩ = Trace(ATB) =
∑

i ,j AijBij and Eij = eie
T
j .

Only L = n(n−1)
2 unique entries in D, and D = DT

For α = (i , j), i < j , if we define Eα := Eij + Eji , we can rewrite PΩ

as
PΩ(D) =

∑
α∈Ω

⟨D,Eα⟩Eα (6)

Goal becomes, can we reconstruct D from viewing PΩ(D)?
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Matrix Completion I

Given a matrix A ∈ Rn×n with rank(A) = r ≪ n, lots of repeated
information in entries of A.

If r = 1, need at least 1 entry in each row/column. If sampling at
random, expected number of samples to achieve this is ≈ n log(n)

What about matrices like the following?
1 0 . . . 0
0 0 . . . 0
...

. . .

0 0


︸ ︷︷ ︸

coherent


1 1 . . . 1
1 1 . . . 1
...

. . .

1 1


︸ ︷︷ ︸

incoherent

(7)

Mathematical notion of entrywise ”diffuseness” necessary to exclude
pathological cases
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Matrix Completion II

If we wanted to compute the ground truth matrix M, we can define
the following optimization routine

minimize
X∈Rn×n

rank(X) subject to PΩ(X) = PΩ(M) (8)

Rank is non-smooth, optimization is combinatorially hard. Replace
rank with a convex surrogate function ∥Y∥⋆ =

∑n
i=1 σi where σi is

the i-th largest singular value of Y

Defining new convex routine yields

minimize
X∈Rn×n

∥X∥⋆ subject to PΩ(X) = PΩ(M) (9)

which has lots of nice convergence guarantees.
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Matrix Completion III

So why spend time on this if methods exist?

Scalability

Convergence guarantees for non-convex methods

Distance matrices do not play nicely with existing methods

Have not leveraged knowledge of dimension of point cloud
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Riemannian Approach I

Common approach in constrained optimization is if the constraint is
smooth, can consider algorithms as unconstrained gradient descent on
a manifold.

Algorithmic intuition is that you step in an ”allowable” direction on a
manifold (in the tangent space) by some step size, then pull back on
to the manifold

Figure: Tangent space of a sphere with a retraction map (Boumal, 2023)
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Riemannian Approach II

In (Wei et al., 2020), the following approach was established. The set

M := {X ∈ Rn×n | rank(X) = d}

is an embedded manifold in Rn×n. This allows us to define the
following algorithm.

minimize
X∈Rn×n

⟨X−M,PΩ(X−M)⟩ subject to rank(X) = d (10)

At a point X ∈ M. the tangent space

TXM = {UZT
1 + Z2V

T |Z1,Z2 ∈ Rn×d} (11)

where X = UΣV for U,V ∈ Rn×d .
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Riemannian Approach III

Using the previous ideas, Wei et al. define the following algorithm

RGrad

Initialize with X0 = SVDr (PΩ(M)) = U0Σ0VT
0 =

∑r
ı=1 σiuiv

T
i . For

l = 0, 1, 2... do

1 Gl = PΩ(Xl −M)

2 αl =
∥PTlGl∥2F

⟨PTlGl ,PΩPTlGl ⟩

3 Wl = Xl + αlPTl
Gl

4 Xl+1 = SVDr (Wl)

where Tl is the tangent space at the l-th iteration and T is the tangent
space at the true solution. Some assumptions on |Ω| required to prove
convergence.
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Translating to optimization over Gram matrices

We only have access to d2
ij for (i , j) ∈ Ω.

Recall that

d2
ij = pTi pi + pTj pj − 2pTi pj

= Xii + Xjj − Xij − Xji

The relevant set will be

S = {Y ∈ Rn×n|Y = YT ,Y · 1 = 0}, dim(S) = L

Let α = (i , j) for i < j . Define wα = Eii + Ejj − Eij − Eji . It follows
now that

d2
ij = ⟨X,wα⟩ (12)

One can show that {wα}α∈I forms a basis for S but ⟨wα,wβ⟩ ≠ δαβ.
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Dual Basis

Can define dual, or bi-orthogonal, basis {vα}α∈I such that
⟨wα, vβ⟩ = δαβ.

Defining H = [⟨wα,wβ⟩] ∈ RL×L allows us to analytically compute
the dual basis {vα}

vα =
∑
β∈I

H−1
αβwβ (13)

The structure of the dual basis also allows any Y ∈ S to be
decomposed as

Y =
∑
α∈I

⟨Y,wα⟩vα =
∑
α∈I

⟨Y, vα⟩wα (14)

Using these ideas, we define a new sampling operator RΩ : S → S

RΩ(·) =
∑
α∈Ω

⟨·,wα⟩vα (15)
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Defining Algorithm I

One problem with RΩ is that it is not self-adjoint.
Defining the function

f (Y) = ⟨Y − X,RΩ(Y − X)⟩ (16)

We can see that

∇Yf (Y) =
1

2
(RΩ(Y − X) +R⋆

Ω(Y − X)) (17)

But this requires knowledge of R⋆
Ω(X), and

R⋆
Ω(·) =

∑
α∈Ω

⟨·, vα⟩wα (18)

and we don’t have access to ⟨X, vα⟩
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Defining Algorithm II

One option is to define a self-adjoint surrogate R⋆
ΩRΩ as follows:

R⋆
ΩRΩ(·) =

∑
α,β∈Ω

⟨·,wα⟩⟨vα, vβ⟩wβ (19)

This allows us to define a new objective function

minimize
Y∈Rn×n

⟨Y − X,R⋆
ΩRΩ(Y − X)⟩ subject to rank(Y) = r (20)

R⋆
ΩRΩ Algorithm

Initialize with X0 = EVDr (R⋆
ΩRΩ(X)) = U0Σ0UT

0 For l = 0, 1, 2... do

1 Gl = R⋆
ΩRΩ(Xl − X)

2 αl =
∥PTlGl∥2F

⟨PTlGl ,PΩPTlGl ⟩

3 Wl = Xl + αlPTl
Gl

4 Xl+1 = EVDr (Wl)
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Defining Algorithm III

Another self-adjoint surrogate, FΩ, is defined as follows:

FΩ(·) =
∑
α∈Ω

⟨·,wα⟩wα (21)

This allows us to define a new objective function

minimize
Y∈Rn×n

⟨Y − X,FΩ(Y − X)⟩ subject to rank(Y) = r (22)

FΩ Algorithm

Initialize with X0 = EVDr (FΩ(X)) = U0Σ0UT
0 For l = 0, 1, 2... do

1 Gl = FΩ(Xl − X)

2 αl =
∥PTlGl∥2F

⟨PTlGl ,PΩPTlGl ⟩

3 Wl = Xl + αlPTl
Gl

4 Xl+1 = EVDr (Wl)
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Defining Algorithm IV

Alternatively, lose quadratic form interpretation, as no reference in
algorithm to objective function, as follows:

RΩ Algorithm

Initialize with X0 = EVDr (RΩ(X)) = U0Σ0UT
0 For l = 0, 1, 2... do

1 Gl = RΩ(Xl − X)

2 αl =
∥PTlGl∥2F

⟨PTlGl ,PΩPTlGl ⟩

3 Wl = Xl + αlPTl
Gl

4 Xl+1 = EVDr (Wl)

Why might we prefer one over the other? Relies on statistical properties of
the respective operators, which is relevant to convergence analysis.

Chandler Smith (Tufts) RieEDG April 25, 2024 20 / 26



Convergence Analysis

How does one undertake these types of convergence analysis proofs? Want
contraction in the Frobenius norm.

∥Xl+1 − X∥F = ∥Xl+1 −Wl +Wl − X∥F
≤ ∥Xl+1 −Wl∥F + ∥Wl − X∥F

≤ 2∥Wl − X∥F
= 2∥(Xl − αlPTl

RΩ(X− Xl))− X∥F
= 2∥(I − αlPTl

RΩ)(Xl − X)∥F
≤ 2∥(PTl

− αlPTl
RΩPTl

)(Xl − X)∥F︸ ︷︷ ︸
I1

+ 2∥(I − PTl
)(Xl − X)∥F︸ ︷︷ ︸
I2

+ 2|αl |∥PTl
RΩ(I − PTl

)(Xl − X)∥F︸ ︷︷ ︸
I3

I1 is the tricky term!
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Restricted Isometry Property

All convergence results in matrix completion rely on the Restricted
Isometry Property (RIP).
Idea is simple: In expectation, how much do the sampling operators
KΩ ∈ {R⋆

ΩRΩ,RΩ,FΩ} deviate from the identity (when restricted to T)?
More formally, is

∥PTKΩPT − cPT∥ (23)

small for some constant c > 0?

Theorem (RIP of RΩ)

Suppose Ω is a set of entries of size m sampled independently and
uniformly with replacement. Then for all β > 1∥∥∥∥ L

m
PTRΩPT − PT

∥∥∥∥ ≤ 1

2
(24)

with probability 1− 2n1−β provided that m ≥ Cβn log(n) for some
C = O(1)
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Results I

Figure: All results captured using R⋆
ΩRΩ algorithm
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Results II

Table: Relative recovery error ∥X− Xrev∥F/∥X∥F between the recovered Gram
matrix and the true Gram matrix averaged over 20 trials using the RΩ algorithm.

Dataset
γ

5% 3% 2% 1%

Sphere (3D, n = 1002) 1.5e-07 3.0e-06 8.3e-07 0.46

U.S. Cities (2D, n = 2920) 5.9e-08 1.1e-07 2.0e-07 7.3e-07

Cow (3D, n = 2601) 6.1e-08 1.3e-07 2.3e-07 8.9e-07

Swiss Roll (3D, n = 2048) 8.1e-08 1.3e-07 3.0e-06 0.0035
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The End
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