
MATH 123 Lecture Notes

Lecture 1: Linear Algebra Review, Bases/Encodings
To begin with Lecture 1, we'll do some linear algebra review:

Encoding and Decoding
If I take a vector

[ ]

this is an object that is represented uniquely as a linear combination of two vectors e1, e2:

[ ] = x[ ]

e1

+ y[ ]

e2

We can draw this as something like

and this will allow us to put together all of R2 in an easy, straightforward way. This is the concept of a
basis in a finite dimensional vector space.

Let's see a brief example:

The coordinates in the basis vector represent the way that this vector is decomposed and how these
elements are expressed in the given basis.
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Basis example

Let →x = ( ), and let B = {( ),( )} be a basis for R2. Decompose →x as a linear combination

relative to the basis:

Notationally, we can represent →x in this basis as [→x]B = ( )
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Now, the standard basis B is only one of infinitely many that we can pick to represent our data! We'll now
show how to find expressions of vectors in R2 in different coordinate systems.

Exercise

Let x = ( ) and consider the basis B = {( ),( )} side note: how do we know that this is a basis for

R
2?

Describe the encoding and decoding steps of x in this basis

Solution

First, describing the encoding is as follows:

( ) = 1( ) + 2( )

This can be represented as

This lets us solve for 2 = 1, and 1 22 = 1 1 = .

Therefore the encoding in B maps ( ) ( ).

Now, using the obtained encoded coefficients, we can now decode to reconstruct the original vector as

( ) + 1( ) = ( )

Pictographically,

x

oi eoi

x

Definition of a Basis

Encodings/decodings

We can think about this through describing basis representation as an encoding as well. That is, the

vector x ∈ R
2 exists as ( ), and it is encoded in B as ( ). We can then decode this back and

figure out what the coefficients are as well. Obviously, this is a pretty trivial example.
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Formally, we can define a basis for Rn as follows. Let B = {v1, v2, … , vn} = {vi}ni=1 where each vi ∈ R
n. B

forms a basis in Rn if and only if

Brief Exercise:
What does property 1. give us? What does property 2. give us?

Extension to higher dimensions
From what we've seen to this point, there doesn't seem to be a point in choosing one basis over another,
outside of simplicity. This is certainly the case when considering something like R2, which is small and has
a relatively simple structure.

Consider however even taking 2 × 2 pixel images

and vectorizing them. These small images alone now live in R4.

In this high dimensional space, questions of

become substantially harder and require more thought. The question of good bases and representations
now becomes a lot more salient, and the problem of encodings matters more as well.

Linear Transformations
We now extend our review of linear algebra into the concept of linear transformations. We say that a map
: Rn → R is linear if

1. The vectors v1, v2, … , vn are linearly independent

2. Any vector in Rn can be expressed as a linear combination of the vectors in B.

Computation

Visualization
Analysis/Inference

(x + y) = (x) + (y) x, y ∈ R
n

(x) = (x) x ∈ R
n ∈ R.



Now, how can we represent these transformations?

For this first example, we will take the standard coordinate system in Rn and R. Let

Now, for any x ∈ R
n, there exist scalars {i}ni=1 such that

x = 1e1 + + nen

Therefore,

where the second line follows from linearity.

If we recall that matrix multiplication is defined for A ∈ R×n and x ∈ Rn as

Ax = = x1a1 + + xnan

We can apply the definition to our matrix multiplication above and see that

(x) =

[x]B

We can seek to generalize this idea now!

Let B = {vi}ni=1 be a basis for Rn and let B = {wi}i=1 be a basis for R. If we consider : Rn → R, then we
can do the following expression in matrix multiplication:

The matrix defined above is the matrix representation of the linear map  with respect to the bases
B and B. Note that this is specific to the representation of the matrix in the selected bases of the
linear spaces.

Therefore,

[(x)]B = [x]B

Goal next time

B = {e1, e2, … , en}

B = {e1, e2, … , e}

(x) = (1e1 + + nen)
= 1(e1) + + n(en)

| | |

a1 a2 … an

| | |

x1

xn

| |

(e1) … (en)

| |
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(x) = 1(v1) + + n(vn)

[(x)]B = 1[(v1)]B + + n[(vn)]B

=

[x]B

[(v1)]B … [(vn)]B
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n
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Can we find a basis B such that the representation of  is diagonal, i.e. a dilation operator?

Lecture 2: Eigenvectors
What is an eigenvector?
First, we say that a vector x ∈ Rn is an eigenvector of a matrix A ∈ Rn×n if

Ax = x

for some ∈ R. We call the corresponding constant  an eigenvalue of A.

For an eigenvalue  of a matrix A, it follows that

which will be a true statement if and only if

et(A ) = 0

side note: why? what's one way to define the determinant in terms of the eigenvalues of a given matrix?

We call the polynomial in  that comes from et(A ) the characteristic polynomial of A.

Ax = x

Ax x = 0

(A ) = 0

Computing the eigenvalues and eigenvectors of a matrix

Consider the following matrix A = [ ]
. Compute its eigenvalues and eigenvectors

Solution: First, notice that

To compute the eigenvectors, we will proceed as follows:

2 = 2 (A 2)x = 0, so

1 = (A )x = 0, so

2

1 4

A = [ ]

et(A ) = 0 ( )(4 ) 2 = 0
2 + 10 = 0
( 2)( ) = 0

1 = , 2 = 2

2

1 4

[ ]( ) = ( )

x1 + 2x2 = 0

x1 = 2x2

v2 = ( )

1 2

1 2
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x2

0

0

2
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Next, we define the spectrum of a matrix A.

In the previous example, the spectrum of [ ] is {2, }

In the previous example, (A) = .

Exercises

What's the spectral radius of the following matrices?

A = [ ], B = [ ]

Answer: (A) = 10, (B) = 20.

Linear Independence of Eigenvectors

Let's return to the matrix given as A = [ ]. Are the eigenvectors of A linearly independent?

Well, the eigenvectors were v1 = ( ) and v2 = ( ). To determine whether or not they're linearly

independent, we can do the following:

[ ]( ) = ( )

x1 x2 = 0

x1 = x2

v1 = ( )

2 2

1 1

x1

x2

0

0

1

1

Spectrum

Let A ∈ R
n×n. We define the spectrum of A, denoted (A) as

(A) = { ∈ R| et(A ) = 0}

2

1 4

Spectral Radius

The spectral radius of a matrix A, denoted (A), is given by

(A) = soteei(A)
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Does this hold more generally?

Proof of Proposition

We will proceed by induction. First, we note that n = 1 is trivial. Side note: why?

Next, we assume the statement is true for 1 eigenvectors, and we seek to show that this holds for the -th
eigenvector

First, if this holds for the first 1 eigenvectors v1 through v1, then the only solution to

1v1 + + 1v1 = 0

is the trivial solution. Now, assume that we add the -th eigenvector v to the above equation and that there
exists a non-trivial solution to the equation

1v1 + + v = 0

Now, we can apply (A ) to the above equation as follows:

Now, by the induction assumption, {vi}1i=1 forms a linearly independent set. As such, as this is a sum over
only the vectors {vi}1i=1, we know that for each i ≠ , that i(i ) = 0 and therefore i = 0 in each of these
equations.

Now, returning to the original linear independence equation, it must be the case that v = 0 now, therefore
implying that = 0, thus indicating that {vi}i=1 forms a linearly independent set.

1( ) + 2( ) = ( )

( )( ) = ( )

1 22 = 0

1 + 2 = 0

1 = 22

1 = 2

1 = 2 = 0
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Proposition

Eigenvectors corresponding to different eigenvalues must be linearly independent

(A ) (1v1 + + v) = (A )0

(A )1v1 + + (A )v = 0

1(1 )v1 + + 1(1 ) + ( )v = 0

1
i=1

i(i ) = 0

Remark



Diagonalizability
Diagonalizability is a really important property when considering matrices. We provide an example of a
non-diagonalizable matrix below:

Example of a defective matrix

Consider the following matrix A = ( ). Its eigenvalues are 1 = 2 = .

Now,

So our only eigenvector is ( ), so A is defective.

First, we say that a matrix is non-defective or diagonalizable if the following holds:

Now, consider the following. Let the matrix A have {ui}ni=1 linearly independent eigenvectors. As such,

So, for the matrix =  , we can see that

=

This can be written as A = , implying A = 1, and therefore A and  are similar matrices. Given that they are
similar matrices, they share eigenvalues.

An n × n matrix can only have at most n distinct eigenvalues. Why?

2

0

(A ) = 0 ( )( ) = ( )

x2 = 0, x1ree

0 2

0 0

x1

x2

0

0

1

0

Diagonalizability

We say that a matrix A ∈ R
n×n is diagonalizable, or non-defective, if its eigenvectors {vi}ni=1 span Rn

.

Au1 = 1u1

Au2 = 2u2

Aun = nun
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| | |

u1 u2 … un

| | |

| | |

u1 u2 … un

| | |
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Proof of the above proposition (non-essential)

First, let A and B be similar matrices via , i.e. A = B1. Then

thus showing that these two matrices share a characteristic polynomial (implying their eigenvalues share
an algebraic multiplicity.)

Next, we show that the eigenvalues share geometric multiplicity.
Now, if Av = v, then B1v = v B1 = 1v. So, if v is an eigenvector of A with eigenvalue , the 1v is an
eigenvector of B with the same eigenvalue. As such, every eigenvalue of A is an eigenvalue of B, and
interchanging these objects in the above computations implies that they share eigenvalues with the same
geometric multiplicities.

Combining the two results gives the solution.

Exercise

Let A = ( ).

et(A ) = et(B1 )

= et(B1 1)

= et( (B )1)

= et() et(B ) et(1)

= et(B )

Proposition

All eigenvalues of a symmetric matrix are real. Eigenvectors corresponding to different eigenvalues
are orthogonal

Spectral Theorem

A symmetric matrix has the following decomposition:

A =

where = =

1

1

1. Is A diagonalizable? Answer without computing

2. Find the eigenvalues of A
3. Find the eigenvectors of A. What can you say about these eigenvectors?



Exercise

Let : R2 → R
2 be a linear map defined as

(( )) = ( )

Lecture 3: Singular Value Decomposition (SVD)
In this lecture, we'll introduce the SVD as a generalization of the spectral theorem.

Spectral Theorem
We know from last lecture that. asymmetric matrix is diagonalized by orthogonal eigenvectors, which can
be written as

A =

where the columns of  are orthonormal eigenvectors of A. We say that

This is a nice property for matrices to have.

Question: Does this hold for wide classes of matrices?

Answer: No!

A reason this doesn't work is the non-diagonalizable matrices in Rn×n as discussed previously.

Question: A reasonable question is can we extend this idea of a spectral theorem to
non-diagonalizable matrices? What about non-square matrices?

Approach

We're going to use the diagonalization of AA as a potential guide to answer this question more thoroughly.

Proposition 1: er(A) = er(AA)

4. Using the eigenvectors as a basis (why can we do this?), write the vector ( ) as a linear combination

of the two vectors.

0

2

5. Write the spectral decomposition of A.

x1

x2

x1 + x2

x1 + x2

1. Find the matrix of  with respect to 
{( ),( )}

0

1

1

0

2. Find the matrix of  with respect to {( ),( )}

1

1

1

1

 is an orthogonal matrix, i.e. = 1.
 is a diagonal matrix consisting of eigenvalues of A.



Proof:

This concludes the proof.

Side note

Before proceeding from where we left off last time, I want to return to the spectral decomposition to make
the following interpretation.

As we've seen, for any x ∈ R
n, we have that for a basis vi that x = 1v1 + + nvn. This means that

[x]B = ( ), and that x = V [x]B

In essence, V  is a map of x from one coordinate system to the next. How can one go back? Well, that's
just V 1

So, how can we interpret the spectral decomposition through this lens? We previously denoted that V  was
an orthogonal matrix. Orthogonal matrices are special, as they correspond to rotations and reflections.

As such, what's happening with A = V V ? As V 1 = V , we can say explicitly that V  rotates a vector x into
the basis B = {vi}ni=1 defined by the eigenvectors. This takes in the standard representation, and
represents it in the eigenbasis! It makes the vector [x]B

Then what happens? In this basis, we just need to scale, or dilate the vectors via .
Lastly, V  rotates this representation back from [y]B back into the original basis, so that now I'm left with a
standard representation for x (or whatever basis you were originally in. There's nothing special about the
standard basis!)

Exercise: er(A) = er(AA).

Now, let's take a non-square matrix A ∈ R×n where = r(A). We can recall the dimension theorem
(sometimes known as rank nullity)

Dimension Theorem n = ier() + r(A).

Exercise: r(A) = r(A) = r(AA) = r(AA).

Building the SVD
Let's consider the diagonalization of AA. This matrix has

() Let x ∈ er(A). This means that Ax = 0. Trivially then AAx = 0 x ∈ er(AA).
() Let x ∈ er(AA), so AAx = 0 by definition. Let's multiply the previous equation on both sides by x.

xAAx = 0

Ax22 = 0
Ax = 0

x ∈ er(A)

1 … n

Eigenvalues 1, 2, … , n where 1 n



Now, per our notation convention, AAvj = jvj.

Since AA is symmetric, we have that the eigenvectors are orthogonal.

Observation:

Since r(AA) = r(A) = , we have that exactly  eigenvalues are positive as AA is positive semidefinite
(PSD).

Exercise: Why is AA PSD?

Claim: Positive eigenvalues of AA are equal to the positive eigenvalues
of AA.

Proof:

First, let's define the following objects:

Now, notice that

indicating that AAuj = juj for all 1 j .

Now, are these eigenvectors orthogonal? Notice that

This implies that the positive eigenvalues coincide, as claimed previously, and that u1, … , u are the
eigenvectors corresponding to 1, … ,  of AA.

Now, we can do the following: I can build a orthogonal matrix  such that

=

where u+1, … , u complete the set to be an orthonormal basis of R.

Eigenvectors v1, v2, … vn where each vi ∈ R
n

j = j1 j n

uj = 1jAvj1 j  (Note: Only up to  since this isn't defined for j + 1 as division by zero.)

AAuj = 1jAAAvj

= 1jAjvj

= 1jjAvj

= 1jjjuj

= juj

uju = 1jvjAAv

= 1jvjv

= {

1 j =
0 ese

| | | | |

u1 u2 … u u+1 … u

| | | | |



I can play the same game with a matrix that we call

V =

where now the vi's span Rn.

Previously, we stated that Avj = juj1 j . Now, for j + 1, we know that Avj = 0, corresponding to the zero
eigenvalues of AA, indicating that we can say that

So, from here we can build a matrix ∈ R
×n where

=

Now, we can see that AV =  where A ∈ R
×n, V ∈ R

n×n, ∈ R
×, and ∈ R

×n where  and V  are orthogonal,
and  only has entries along the diagonal.

Now,, as V V = , we have that A = V ! Notice how this looks exactly like the spectral theorem!

Exercise: Is the SVD of a matrix A unique?

How can I interpret this like with the spectral decomposition? It's the same idea, except now you're
allowing for more flexibility with your rotations and your dimensions.

Now what you might end up with is something that rotates in a lower dimension, then embeds in a higher
dimension, or vice versa. It's still the exact same intuition, however.

Reduced SVD
Sometimes, we seek to discard the zero singular values since they aren't particularly relevant to the
object.

| | | | |

v1 v2 … v v+1 … vn

| | | | |

Av1 = 1u1

Av2 = 2u2

Av+1 = 0

Avn = 0

1 0 … 0

0 2

0 0 … 0

Definition of Singular Value and SVD

We call each of the objects j the singular values of A, and
A = V  is the singular value decomposition of A



For the matrix product AB, we can write this in the form of the outer product of its columns/rows.

That is,

= a11 + a22 + + an

Applying this to the SVD, we see that

= 1u1v1 + 2u2v2 + + uv

So we can say that A = i=1 iuivi.

Now, we can say that a reduced SVD is given by

=

∈R×

, V =

∈Rn×

,

∈R×

So the reduced SVD can be given as A = V .

Truncated SVD

It turns out, sometimes the most important information is only held in a few of the singular values of a
matrix.

For example, consider a matrix where 1 = 10, and 2 = 102, 1. We might only need a couple of singular
components to approximate this matrix effectively.

We can now consider A 1u1v1, or A 1u1v1 + 2u2v2, given by

A = ( )( )

This might not always be a good approximation, but in some real datasets sometimes all you need is just
a handful of singular values!

Lecture 4: More on the SVD and Matrix Norms
Starting off this lecture with a quiz. Once this is done...

Now, recall that the SVD of A ∈ R
×n is given by A = V  for ∈ R

×, V ∈ R
n×n, ∈ R

×n, and = , V V = n.

We also wrote the SVD of A = i=1 iuivi where each of the summands is a rank-one outer product.

| | |

a1 a2 … an

| | |

1

2

| |

u1 … u

| |

1v1

v

| |

u1 … u

| |

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v1 … v

| |
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From here, we also discussed the reduced and truncated SVDs.

Exercise:

Compute the SVD of A = xy for arbitrary x ∈ R, y ∈ R
n.

Step 1: Compute the right singular vectors

First, we need to compute the right singular vectors through finding the eigenvectors of AA to get V .

For us, AA = yxxy = x22yy. Looking at this, it's clear the unit length eigenvector v = yy2.

Step 2: Compute the singular values

Using a Rayleigh quotient argument, we can compute the eigenvalue of AA by doing
vAAv = x22y22yyyy = x22y22.

Step 3: Compute the left singular vectors

This is almost exactly identical to Step 1, so we can just see automatically that u = xx2.

Step 4: Full SVD

If you only care about the reduced SVD, we're done now. If you want to compute the full SVD, you just
need to find 1 and n 1 vectors orthogonal to x and y, respectively, to pad out the matrices  and V .

Exercise:
Let A =  be a diagonalizable matrix. How is the eigenvalue decomposition related to the singular value
decomposition of A? If I restrict this to A 0 (i.e. A is positive semidefinite), how does this change?

Geometric Interpretation of the SVD
Here I walk through the matlab script SVD_interpretation.m.

Matrix Norms
In the same way that we have notions for how "big" a vector is, we can play the exact same game with
matrices.

For example, I know that

A = ( )

is in some sense bigger than

B = ( )

We'll now quantify this statement a little bit more exactly.

10 0

0 1000

1 0

0 1



Frobenius norm

The first norm that we want to define is called the Frobenius norm.

Exercise: How can you relate the Frobenius norms to more standard vector norms?

Example:

Let's compute the Frobenius norm of A = ( ).

Well, A2 = ij a2ij = 4 + 1 + = 14, so A = 14.

Exercise: Prove that A2 = i=1 2i.

Spectral/2 norm

The Frobenius norm is useful in some contexts, but maybe not all. Another useful matrix norm is the
spectral norm, which is a measure of how much a matrix A maximally stretches a vector.

A2 =
1j

j = 1

Side Note:

We define what's known as the condition number of a matrix as = 1. This appears a lot in numerical
linear algebra, and may show up later in this course.

Eckart-Young(-Mirsky) Theorem
Consider a matrix A ∈ R×n where r(A) = . Let B ∈ R×n be another matrix of r(B) = . For any , if we
define

A =
i=1

iuivi

for A = V , we have that

A() = rir(B)=A B

and furthermore that

A() = rir(B)=A B2

Definition

For a matrix A, we say that

A2 =
ij

a2ij

is the Frobenius norm of A

2 1

0



Proof Sketch:

The Frobenius norm is what's known as "unitarily invariant", meaning that you can rotate things as freely
as you want and the norm is preserved (like vectors). This allows us, effectively, to only consider i  for
some matrix .

Writing this out, as rir(B)=A B = rir(B)=A B2, we're left with

2 =
i
(i 2ii) +

i≠j
2ij

The rightmost term is positive, so we only consider diagonal matrices . To minimize this such that r() = ,
we should set ii = i.

Rotating back, we get the proof statement that we set out.

What's the remaining error in approximation?

Well, from above, we have that

A A() = +1 + +

and that

A A()2 = +1

This is super useful in the field of low-rank approximation, where we can compress and approximate
matrices like A using truncated decompositions. In many cases, we still preserve much of the existing
structure with only a few singular values!

Now, we can understand this

Now, we can use the Low_Rank_Approximation.m file for the demonstration.

Lecture 5: Principal Component Analysis
Consider data represented as {xi}ni=1 ⊂ R for some large .



A classic example is the Netflix Problem

Problem: Can we reduce the dimension of the data in A so that
the essential information is still captured?
We can think about our data as observations versus features. More specifically, if

=

Each column is a feature, and each row is an observation.

We can think of each person as a vector in R where each entry informs a particular attribute.

For each person, there are lots of attributes. Some of these, however, might be redundant and not capture
that much information. Is there a way that we can reduce the dimension of this data in order to make the
analysis easier?

Basis vectors in R

x1

x2

xn



Let {ui}i=1 be an orthonormal basis for R, and build a matrix  such that

=

As the columns are orthonormal, we know that = =

We can represent a vector x in this basis as x = i iui

Problem: Compute the coefficients i

To do this, we can see that for any uj that

As this holds for any j, we can say that x = i x, uiui where x, y = xy

So, if I have that

x =

it follows that = x.

Which orthonormal basis is "best"?
This question will motivate the concept known as principal component analysis, or PCA.

PCA Motivations

The idea is that

| |

u1 … u

| |

ujx =
i

iujui

=
i

iij

= i

| |

u1 … u

| |

1











Recall the ellipse view of the SVD...

1. compute u1 such that, over all projections onto 1 subspaces, it is variance maximizing

2. The projection of  onto s {u1, u2} is variance maximizing on projections over 2 subspaces

Definition

The variance of = {xi}ni=1 is defined as

r() = 1n n
i=1

(xi )2

where

= 1n n
i=1

xi



If the goal is to maximize the variance of a projection of , then we note that the projection of x onto u is

given by (ux)u

Example:

Project ( ) onto ( ).

Answer:

rox = (( ) ( )) ( ) = ( ).

PCA derivation
Without loss of generality, we assume that = 0 for simplicity.

Thus, variance maximization is given by

ru1n n
i=1

(uxi)
2

Expanding this out, we can see that

So, the problem is given by

ruuu

Now, how can we find u? Calculus and Lagrange Multipliers!

We can define a function : R → R given by (u) = uu.

1 4 0 0 1

1 4 0 0 1 0 0 1 0 0

1n n
i=1

(uxi)
2

= 1n n
i=1

uxixiu

= u 1n n
i=1

xixiu



orietri

Sidenote

We can rewrite = 1n where

= ∈ R
n×

x1

xn



Using the method of Lagrange multipliers, we can find the optimum of  given the constraint that uu = 1.

This can be given by

ru uu

oetie

(uu 1

ostrit

)

If we differentiate this with respect to u and set it equal to zero, we get that

This means that  is an eigenvalue and u is an eigenvector!

Now, if the goal was to maximize the value uu, which value will give this?
()!!

If we want to compute the second direction of most variance, that is orthogonal to u1, we can consider
ruu1

uu = u2, and inductively get all of the principle components.

PCA summary
So, given {xi}ni=1 ⊂ R, presuming that the data is centered, we can do the following:

Lastly, the larger the eigenvalue means the more significant the direction is in terms of the total variance
of an object!

Lecture 6: More on PCA
PCA review
First, recall from the previous lectures that for a data matrix

=

Here, each vector xi ∈ R. We assume that the data is centered, or mean zero.

We defined the max principal component as the direction of maximum variance: here, we used the
method of Lagrange multipliers and found that the direction that maximized the variance was the
eigenvector corresponding to the largest eigenvalue of .

We saw a similar thing with respect to the second principal component, and so on and so forth.


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2u 2u = 0

u = u

1. Form the covariance matrix =  where the rows of  are xi

2. Compute the eigendecomposition of 
1. u1 is the direction associated with maximum variance
2. u2 points in the direction of the second largest variance

x1

xn



Rayleigh Quotient
For symmetric matrices, are there easier ways to compute the eigenvalues of our matrices?

Quadratic form:

Example

Let A = [ ]. Then for x = ( ),

Hence the name quadratic form

Proposition: xAx = ij aijxixj

Proof:

Notice that

Now, for the concept of the Rayleigh quotient, the goal is to either maximize or minimize the quadratic
form.

Exercise: With no constraints on x, what is x xAx? ix xAx?
Now, this is clearly unbounded. Let's consider instead the objective x2=1 xAx:

Now, as A = A, we have that A = V V  where  is diagonal and V  is orthogonal. Now, we can reexamine
the quadratic form as

xAx = xV V x = (V x)(V x) = yy

where y = V x. Now, what is yy?

Definition

We say that a function : x xAx is a quadratic form

1 2

2 1

x1

x2

xAx = ( )( )( )

= ( )( )

= x21 + x22 + 4x1x2

x1 x2
1 2

2 1

x1

x2

x1 x2
x1 + 2x2

2x1 + x2

xAx =
i
xi(Ax)i

=
i
xi

j
aijxj

=
ij

aijxixj



Well, as = i(1, … , n) = , we have that

yy =
i

iy2i

which clearly implies that

n
i
y2i yy 1

i
y2i

and furthermore, y22 = i y2i so

nyi22 yy 1y22

Exercise: Prove x22 = y22.

Using the above exercise, dividing both sides by x22, we have that

i(A) xAxxx

eihotiet

(A)

When is equality achieved? Let x = v1. Then the numerator equals v1Av1 = v11v1 = 1v1v1, and the
denominator equals v1v1.

Similarly, the minimum is achieved by vn.

Exercise: How is the first principal component connected to the Rayleigh
quotient?

Courant-Fischer Formula
Let A ∈ R

n×n be a symmetric matrix with 1 n and corresponding eigenvectors v1, … , vn. Then

Exercise: How are Courant Fischer and PCA connected?

Applications to PCA
Now, returning to a data matrix  as before.

We are interested in choosing  principal components v1, … , v to project the data onto (i.e. capturing the 
orthogonal directions that contain the most variance in the data).

Exercise:

1

n
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n = i
x≠0

xAxxx

n1 = i
xvn,x≠0

xAxxx =
xv1,…,vn2,x≠0

xAxxx

2 = i
xvn,…,v,x≠0

xAxxx =
xv1,x≠0

xAxxx

1 =
x≠0

xAxxx



Let V be the matrix of principal components.
1. Find the coefficients, (i.e.) the projections of the data onto v.
2. What is , the decoding of the data onto the  principal components?

Solution

First considering x1, we have that

From this, we can read that the coefficient matrix is V .

If we want to reconstruct the output, we can approximate
= V V .

SVD and PCA

If we let = V , we can take the SVD of the data matrix and see that

so the SVD might be a cheaper thing to consider instead of forming  and then doing the full eigenvalue
decomposition! "Better" is more of an NLA style question, however, so we can worry about this later.

Lecture 7: PCA Projection
First, want to recall what it means for a vector to be projected onto another vector. We write this as

roux = uxu2u

Now, given that we have this in mind, we can do the following. Let u be a unit length vector. Then
roux = uxu = u(ux) = (uu)x. What is the object in parenthesis? A matrix! This is a projection onto the 1
dimensional subspace s {u}.

Now, if I have a collection of  orthonormal vectors, how might I build a projection onto s {v1, … , v}? Well,
do it one by one.

ros{v1,…,v}x = v1v1x + + vvx

We call the matrix = i=1 vivi a projection matrix.

Now, what does this particular term look like? Tie this to the spectral decomposition. Mention how it's
related to the SVD in essence. Ask questions about its rank. Draw a picture about how it relates to the
eigenspaces of a matrix, and show geometrically what this looks like a projection onto. How would it
maybe be different in a few different examples? Draw some pictures.

x1 = (xv1)v1 + + (x1v)v

= v1 (v1x1)+ + v (vx1)

= (v1v1 + + vv)x1

= V V x1

=

= [V ]V

= V V

= V 2V



So, recall from previously what we've learned about PCA. Let's now think about projections onto the
principal components.

If we choose  principal components, i.e.

V =

with , and  ideally

We can project xi onto the subspace spanned by the first  principal components using the decomposition
xi = V V xi.

So, our data matrix =

Now, as xi = V V xi, we can use matrix multiplication to see the following:

This is a good formula for how to compute a projection given a data matrix.

Relationship to the SVD of 
Let's see what the relationship to the SVD is now.

First, let = V . Now, let's compute .

Now, notice that

= ( ) ∈ R
n×

So,

∈R×n

( )

∈Rn×

=

∈R×

| |

v1 … v

| |

x1

xn

= V V

=V V

= (V V )= V V

| |

x1 … xn

| |

| |

x1 … xn

| |

= V V V

v1

vn

| |

v1 … v

| |
0

 0
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1
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Write this term out when doing the whole multiplication in explicit detail for them

What we're left with now is = V  where

=  , with V = , and  defined as above.

Exercise: What is the term defined above?

It's the best r- approximation of !

Steps in PCA and Computational Complexity: Omitting
PCA is great, but we should understand how expensive it is for larger and larger matrices. In this section
we'll review how one undertakes PCA and how much it costs computationally.

Step 1: Centering the data

From previously, we saw that we needed to center the data in . This involves computing the mean.

Question: What's the computational complexity of centering?

Step 1: Compute the mean = 1n i xi. This involves n additions and 1 division.
Step 2: Centering each row takes  subtractions
Step 3: Repeat for n rows

The final complexity is (n)!

Step 2: Build the covariance matrix
As = 1n, we can decompose this as = 1n ni=1 xixi, as we saw before. The cost to compute xixi is (2), and
there are n terms in the sum. Thus, the computational complexity is (n2).

Step 3: Eigendecomposition

From NLA theory, the cost of the eigendecomposition for an ×  matrix is (). As ∈ R
×, the cost is ().

Total cost = (n) + (n2) + ().
As such, for bigger and bigger  this can be expensive, but this is relatively cheap in n. This indicates that it
will be very helpful for investigating lots of points in relatively few dimensions.

Now, from before what we've seen is that we can do PCA with just the SVD of = V .

From this, we've seen that = V 2V  from plugging in the definition of  through the SVD.

So, do we need to explicitly form  through forming ? NO!

| |

u1 … u

| |

| |

v1 … v

| |



Why would we prefer one or the other? Well, this is an NLA question. It turns out that forming  and doing
the eigendecomposition here as opposed to just the SVD is more expensive and introduces floating point
errors. In practice, we just form the SVD alone.

Application: MNIST digits
This is going to be the subject of HW 2. Basically all implementation focused on PCA. I can show an
example of this.

Last notes on PCA: Error quantification
Now, we can get a little bit more of interpretation on the reconstruction associated with PCA, specifically
how good the reconstruction of the data through PCA is. Let's assume we have {xi}ni=1 ⊂ R. Let's say its
centered.

Fix an orthogonal basis {ui}i=1 so that there exist constants ij such that

xi =
j=1

ijuj

Now, if we want to find, for example, a xi = j=1 ijuj that lives in an  dimensional subspace that "best"
approximates xi, where , we can do this by seeking to minimize

E = xi xi2

Question: Error when ?

Now, we have seen that the representation of xi on {ui}i=1, we know that this is xi = xi. So, if we truncate
and localize to the first  principal components associated with , we might consider the projection

xi = xi

where =

Now, using this idea from before, we can define the reconstruction error E as

E = 1n n
i=1

xi xi22

How can we compute this with the approximation that we've defined previously?

| |

x1 … x

| |



So! As the variance of the first  principal components is j=1 ujuj, we ultimately want to find an  such that

j=1
ujuj

iiethis

+
j=+1

ujuj

iiiethis

=
j=1

ujuj

r()

Leave the trace expression as an exercise for the problem set.

This ties back into the lagrangian formulation that we investigated earlier. Divide by the trace term and we
can use this to show that the percentage of error left is given by the eigenvalues of the covariance matrix.

Lecture 8: Kernel PCA
PCA is a wonderful technique, but it's not ideal for data that isn't well represented by a linear subspace.

Show a demonstration from Nonlinear_PCA_Demo.m

We can see form this example that we need new techniques to represent our data for nonlinearities.

Setup:  points x1, … , x in R.

Let (x) be a non-linear map : R → R for some .

What if we do PCA on (x1), (x2), … , (x)? Well, this could be expensive for large . Why?

Recall that the total computational complexity of PCA is given by

()

eteri

+ (2)

iiorietri

+ ()

eieeositio

Assumption: i=1 (xi) = 0

Now, in the same game as before, we can define the covariance matrix

= 1
i=1

(xi)(xi)

Now, as ∈ R
×, we have  eigenvalues and eigenvectors. These eigenvectors can be computed as v = v,

and we can use the structural form of  to see that

E = 1n n
i=1 j=1

ujujxi
j=1

ujujxi

22

= 1n n
i=1 j=+1

ujujxi

22

= 1n n
i=1

xi (

j=+1
ujuj)(

=+1
uu)xi

= 1n
i=1 j=+1

xiujujxi

= 1n
i=1 j=+1

uj (xixi)uj

=
j=+1

uj (1n n
i=1

xixi)uj

=
j=+1

ujuj
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1
i=1

(xi) [(xi)v]= v

We say that v are eigenvectors in the feature space

As such, we can see that each v is a linear combination of (xi) just from the equation above. This can be
written in the form, for some constants ai,

v =
i=1

ai(xi)

Now, we can plug this term into the above expression and see that

1
i=1

(xi)(xi)
j=1

aj(xj) =
i=1

ai(xi)()

Now, we make the following definition:

Kernel Function

We define a function (, ) : R × R → R as

(xi, xj) = (xi)(xj)

Now, if we return to () and multiply both sides by (x),

Now, let's define the kernel matrix ∈ R
×, where ij = (xi, xj). Now, we can write the above expression as

1
i=1

i
j=1

ajij =
i=1

aii

What do each of these terms represent? Well, the RHS can be written as the -th entry of the matrix vector
product a for some vector a ∈ R.

The lefthand side is similar. The first term, j=1 ajij is the i-th entry of a. Then, this is summed over i, so the
whole lefthand side is the -th row of  multiplied against a. Therefore, for every ∈ {1, … , }, we can collect
these terms to see that

12a = a

Now, for the non-zero eigenvectors a of , this directly implies that

a = a

Notice that the eigenvectors of the kernel matrix are not the same as the eigenvectors of the
Covariance matrix . a live in a lower dimensional (R) space than the vectors v (R)

Feature Space

We say that the high dimensional space R is the feature space for kernel PCA

1
i=1

(x)(xi)

(x,xi)

(xi)
j=1

aj(xj) =
i=1

i=1ai(x)(xi)

(x,xi)

1
i=1

(x, xi)
j=1

aj(xi, xj) =
i=1

ai(x, xi)
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Now, we want normalized eigenvectors, and we want to be able to project our data onto these normalized
eigenvectors for PCA.

I can represent v = i=1 ai(xi) from before. If I want to project a new datapoint (x) onto the direction defined
by v, we can see that this is given by

(x)v =
i=1

ai(x, xi)

which never requires explicit evaluation of (), only of (, xi)! This will allow us to do the same PCA-style
computations without ever knowing  explicitly!

The question of centering
One thing that we brushed under the rug is the assumption that i=1 (xi) = 0, which might not be the case
necessarily. Let us now define

(x) = (x) 1
i=1

(xi)

The corresponding kernel function  is given by evaluating

This indexwise expression can be neatly re-represented in matrix language as

= 111 111 + 121111

where 1 = [1, … , 1] ∈ R.

Lecture 9: Kernel PCA Part 2
Recall some of the details of kernel PCA. First, we start off with  points in R denoted x1, … , x. We showed
previously that PCA is bad for non-linear data. How can we get around this? We know that we can use the
kernel trick to embed data in higher dimensions and never have to compute things in this high
dimensional space.

We define this embedding map : R → R, and assume that the mapped data (xi) is centered.

From here, we build up the covariance matrix = 1 i=1 (xi)(xi)

C has eigenvector/value pairs v = v, which is what we need for PCA. We really don't want to explicitly
compute this. However, we acknowledge that from the definition of , we have that

1
i=1

(xi) [(xi)v]= v

Once we realize we can write v = i=1 i(xi), we can get around defining the projection onto v through finding
what each  is.

(xi) (xj) = ((xi) 1
=1

(x))((xj) 1
=1

(x))

= (xi)(xj) 1
=1

(xi)(x) 1
=1

(x)(xj) + 12

,=1
(x, x)



This is where we introduced the kernel function idea, i.e. (xi, xj) = (xi)(xj). We saw that from linear
algebra

=

and we solved for  and  through just an eigendecomposition on .

Then we talked about how to consider this if we need to center our data, and saw that this was easily
approachable by taking

= 111 111 + 121111

Now, how do we project (x) onto v? Well, we just get that

(x)v =
i=1

()i(x, xi)

All we need is the computation of the kernel!

Kernel examples
The most obvious kernel is the linear kernel (x, y) = xy. Doesn't buy us much.

One well known kernel is the Gaussian kernel, i.e. (x, y) = e(xy222
2
)

Question: When is the kernel method computationally cheaper? When n  or
n ?

Example: Polynomial kernel

Let's consider the map (( )) =

If we want to compute the kernel of this function, we can do so by computing

(u)(v) = u21v21 + 2u1v1u2v2 + u22v22 = (u1v1 + u2v2)
2 = (uv)

2

We never need to visit the high dimensional space to compute the kernel! All we need is right here.

The generalized polynomial kernel can be given by (x, y) = (xy + ). If we take = 2 and = 2, we can show
that for = 1 that for

(x) = ( )

then

(x)(y) = 1 + 2x1y1 + 2x2y2 + 2x1x2y1y2 + x21y21 + x22y22 = (1 + x1y1 + x2y2)
2

Again, we never had to visit the 6 dimensional space to get this result.

Example: Gaussian Kernel

u1

u2

u21

u1u2

u2u1

u22

1 2x1 2x2 2x1x2 x21 x22



We consider now the Gaussian kernel (x, x) = e (x x22). For simplicity, let's just consider the 1D case with
= 1. What can we make of this kernel, and can we find the original feature map ?

Notice that this is generated by a feature map that looks like

(x) = ( )

This is a vector in an infinite dimensional space, so the function () : R →  is an infinite dimensional
transform to a Hilbert space (irrelevant detail).

Very nice that instead of computing , we get to use this kernel and only compute the kernelized
representations.

Properties of the Kernel matrix
Let's assume that  is a finite dimensional map.

Proposition:

Let  be the kernel matrix generated by (xi, xj) = (xi)(xj) for data {xi}ni=1

Proof

To show 1, notice that ij = (xi)(xj) = (xj)(xi) = ji.

To show 2, we need to see if yy 0 for any y. Let = . Then we have that

thus completing the proof.

Now, we usually aren't given the kernel, so how can we consider instead constructing conditions on (, )?

Mercer's condition

(, ) is a valid kernel function iff the kernel matrix is always PSD for data {xi}.

Proof sketch:

(x, y) = e ((x2 2xy + y2
))

= e(x2) e(y2) (

=0
2xy)

1 21x 222x2
2x …

1.  is symmetric

2.  is positive semidefinite

| |

(x1) … (xn)

| |

yy =
ij

yiijyj

=
ij

(xi)yi(xj)yj

=
i
(xi)yi

j
(xj)yj

= (y)(y)

= y22 0



We can explicitly construct the forward direction, but backwards is less obvious and we won't really touch
on this.

If we consider a valid kernel function, then we have

=

which as = BB for some matrix B, it is PSD.

The other direction, where we have that  is PSD, we can find a way to construct  from . This is the basis of
Reproducing Kernel Hilbert Space theory, which is important in the ML literature.

Limitations of Kernel PCA

Other topics in dimensionality reduction
We covered

Another one that we can do is local linear embeddings (LLE)

The issues here is in determining the right neighborhood.

Other techniques include

Lecture 10: Random Projections

(x1)

(xn)

| |

(x1) … (xn)

| |

1. Choice of kernel function isn't obvious, and is relatively heuristic.

2. No decoding the pre-image problem in the same way that we were able to do before.

1. PCA
2. Kernel PCA

Isomap

tSNE (stochastic neighbor embedding)
Dictionary learning/sparse coding

Nonlinear manifold learning



The goal of this lecture is to find a way to project high dimensional data into a lower dimensional space.

Goal: Retain as much "information" about the data as possible.

Why care about dimensionality reduction?

One idea that we can do is linear projections onto a subspace. How does one project? Well, given a
subspace , we can minimize

i
y∈

x y2

Projection Formula

where = [ ]. We've seen this before.

How do we choose ? With PCA/KPCA, we did this in a data driven/data based way. Sometimes, we might
want an agnostic framework, however.

Question: How do we obtain the low dimensional representation in
PCA?

Answer: The subspace was spanned by some number of the principal
components

Random Projections
First, to define a random projection we define a random vector

Computational complexity

Simple model/analysis
Visualization

1. Find an orthonormal basis {ui}ni=1

2. Project

x = (u1x)u1 + (u2x)u2 + + (unx)un

= u1u1x + + ununx

= x

u1 … un



We say that random variables are identically distributed and identical (i.i.d.) if they're pulled from the same
distribution, e.g. you flip a coin 10 times or draw 10 samples from a gaussian distribution.

Take {xi}i=1 ⊂ R
n.

The idea behind a random projection is to take a random matrix A ∈ R
×n, where n such that we're left

with {Axi}i=1 ⊂ R.

How do these points relate to the original data? Not obvious.

Distance preservation

One thing that we might be able to say is that neighbors in the original space are neighbors in the new,
low-dimensional space. This projection should respect neighbors.

Why is this important?

If we choose to cluster in the lower dimensional space, this should be meaningful and correspond to the
geometry/topology of the original point cloud.

Johnson Lindenstrauss Lemma
Let = {x1, x2, … , x} ⊂ R

n. Then there exists a random linear map : Rn → R such that for any points xi, xj

(1 )xi xj22 (xi) (xj)22 (1 + )xi xj22

as long as o2()2. Notice that this does not depend on n, which can be arbitrarily high dimensional.

We can reinterpret this bound to tell us that the relative error in the measurement is bounded by , as

|(xi) (xj)2 xi xj2|xi xj2

Example
One such  that works is the map (x) = 1A, where the entries of A are iid Gaussians (zero mean, unit
variance).

Intuition: Random projections behave like orthogonal projections in high
dimensions!

We also get norm preservation, i.e.

(1 )x22 (x)22 (1 + )x22

Random vector

A vector x ∈ R
n is called a random vector of each entry is sampled from some underlying probability

distribution.

Ex: x = ( ) where xi (0, 1)x1 … xn



and this property is satisfied with high probability, i.e. close to 1. This can be formulated more explicitly as

[(1 )x22 (x)22 (1 + )x22] 1 2 e(2)

Computational complexity of random projections?

Answer: As A ∈ R
×n and = [x1 … x] ∈ R

n×, we have that the projection occurs in (n) operations. This
works even better if we have sparse random projections. This is faster than PCA!

Connection between JL to concentration of measure in high
dimensions
High dimensional information gets really weird. We'll see this applied to a high dimensional gaussian
random vector. We can define a gaussian vector x (0, ) where  is the dimension, and  is the covariance
matrix of x (if you haven't seen this before, don't worry: this just means that you have  i.i.d. entries xi.)

Now, without proving this statement (and using some properties of Gaussian random variables), we have
that

We want to compare the fluctuation scale more properly, which is given by r(22). To do this, we can see
that by considering

r(22)E(22) = 2 → 0

which indicates that there is tight peak around the mean in high dimensions.

This can be encoded in the following theorem

Theorem: Gaussian Annulus
For (0, ) and any ∈ [0, 1], we have that

[|2 | ] 2 e (2
)

In high dimensions, we get strong concentration effects!

So, why does this happen and how does this relate?

When considering a random projection A ∈ R
×, we are, in essence, doing the following:

Ax22 = i=1 ai, x
2, where ai is a random Gaussian vector with mean 0. So, each ai, x

2 is mean zero and
variance x22. So, by dividing by 1, we are averaging  independent copies of a random variable with mean
x22.

Since we have an average of many random variables, like we saw in the Gaussian annulus, we don't get
much fluctuation in high dimensions.

E(x22) =

r(22) = 2.



Intuitively, projecting with JL is like taking many noisy measurements of a signal and averaging.

Lecture 11: Multidimensional Scaling
First begin lecture with a motivating question: You have a sensor in each corner of the room. We don't
know where the sensors are, but they can communicate with each other. When they do this, they can get
their pairwise distances. Now, can we get a configuration of these points in space? Let's try to see if we
can find out.

We can phrase this mathematically as follows. Let's take points {i}ni=1 ⊂ R, and we can build a matrix

= . Goal is that we want to reconstruct this.

However, what information do we have? We don't know any sort of absolute positions of points here. What
we know in this problem is a collection of scalars {i j2}n(i,j)=1

. What can we do with this?

We can appeal to our friend linear algebra. First thing i'm going to do is the following. I know the scalars in
the set above, so there's nothing wrong with me squaring these. {i j22}n(i,j)=1

 is now the set that I have.

Let ij = i j2. Given this information, I want to pack this into a matrix as follows

= =

So far, it doesn't really look like i've done all that much. However, we can make a connection between an
object intimately related to the points  and the matrix .

Let's first define the following object. We say a Gram matrix ∈ R
n×n is a symmetric matrix that's of the

form = . Entrywise, we can see that (do out the matrix multiplication)

ij = ij

First off, what does this get us? This gets us that  is a PSD matrix (sidenote: all PSD matrices are Gram
matrices. That is to say, we can get a point decomposition that will give us the desired structure no matter
what).

Next question: what's the rank of ? Hint: think about the SVD of  and how this might relate to the
geometric embedding of the points.

Now, we know that  and  are related. Can we relate  to , in hopes that we can relate this to ?

Let's look entrywise. Notice that

Each measurement is too noisy

Taking  independent random projections smooths them out
The resulting average length is almost exactly the true length

1

n

211 212 …

221

2nn

0 212 …

221

0



Interesting! Let's see what we can maybe do with this, now that we have this relationship. I ultimately want
to isolate each entry ij, as I have access to all the 2ij but none of the ij's directly.

Now is where I'm going to add the simplifying assumption that 1 = 0, where 1 in this case is a column
vector of 1's. What does this mean? Show them on the board that this geometrically means that my point
cloud will be centered at the origin. This will matter when we do the next derivation. (Also, what does this
mean for 1 = Means that it's zero and that summing over the rows/columns is also zero.)

So, we have this assumption now. Let's try to disentangle all these terms and see if I can't isolate
something. We're going to do this by considering the means on the distance matrix itself.

First, let's sum across the rows of the pairwise distance matrices:

By symmetry, we can see that

2,j = jj + 1n = jj + 1nr()

Lastly, we can see that (do some of these steps in more detail than in the notes)

Ok! Why did we do all this? We'll write the equations all up together on the board side by side, and then
show that

We have a linear transformation! We can see from this now that (add some steps in the factorization
process, then define the matrix  at the end)

2ij = i j22

= (i j)(i j)

= ii ij ji + jj

= i22 + j22 2ij

= ii + jj 2ij

i, = 1n n
=1

2i

= 1n n
=1

ii + 2i

= 1n ii + 1n 2n i

= ii + 1n

= ii + 1nr()

2, = 1n2
2

= 1n2 + 2

= 1n + 1n

= 2nr()

2ij 2i, 2,j + 2, = ii + jj 2ij ii 1nr jj 1nr() + 2nr()

= 2ij

( )



We note that  is a projection matrix onto the orthogonal complement to the subspace spanned by the
one's vector.

Great! We've now established a matrix  exists and can be computed from . What can we do now?

Well, we know that = , right? So why don't we just try to find a matrix  that satisfies this?

First thing that we know about  is that it has an eigenvalue decomposition. That is, =  where  is a
diagonal matrix. Make the point about how we're going to take the reduced eigenvalue decomposition,
and throw away the nonzero stuff just like in the reduced SVD. Side comment that bc it's PSD, the
eigenvalue decomposition is identical to the SVD.

Here I can define what it means to take the square root of a matrix. For diagonal matrices, it's just a matter
of taking a square root of the diagonal entries (assuming that they're non-negative, important point.)

So now that we have the matrix 12 = , we can see that if I form the matrix 12 = , we get that

(show out the multiplication of the  matrices in more detail)

= 12(12) = 1212 = =

Great! We've established that this is a recovered point matrix . Is it unique?

No! I can take any orthogonal matrix ∈ R
× and append this to  and get = !

This makes sense, as I can rotate points and show that this is something that doesn't affect our data at all.

Applications
Protein folding, sensor localization, dimensionality reduction, etc.

Here I should pause and use a script that I build in order to show them that this technique does actually
work.

Procrustes Alignment
Let's say that I've recovered through MDS a point cloud , and I want to compare it to the actual ground
truth point cloud . We'll assume that the data is centered.

So, we can think about this is equivalent to finding a matrix  such that

i
:=

ij = 12(2ij 2i, 2,j + 2,)

= 12(ij [1n11]
ij

[1n11]
ij

+ [1n1111]
ij

)

= ( 1n11)( 1n11)

= 12

121



is minimized.

I think deriving this result would be somewhat of a disaster since it relies on defining a trace inner product
between matrices. Instead, we just provide the result and then talk about how you can set some number
of anchors in alignment to get global alignment of your points.

Now, we define the following matrix = ∈ R
× where = V  is a full SVD. The minimizer to the problem is

then given by the matrix V .

That is to say,

ri:= = V

So if we want to align  with , all we need to do is compute the SVD of the matrix !

This is more involved if you want to scale points, or shift their centroid. Not impossible however.

So now, let's consider this problem in practice! Let's say that you only have  points where the absolute
distance is known (draw an anchor configuration on the board). Call this ground truth ∈ R

×. WLOG, let's

say that the whole points are given by = [ ] where  is unknown.

If we know all of the pairwise distances, we can do MDS to compute a point cloud  that would've
generated those points.

What we can do now is take = [ ]. We can procrustes align the  and  to get the proper orientation (this

will be really good to show in a demo).

Now that we have this, we can take those few points, get , compute an SVD to get the matrix V ∈ R×, and
now we can align the whole set of points by computing

V =

where the equality holds if things are computed exactly

Non-2 distances
Sometimes we consider distances that aren't the Euclidean distance. You can still get embeddings of
Euclidean points, but we have the following theorem

Theorem:

Let  be a squared distance matrix where ij = (i, j) for some function . Let = 12.  is a positive semidefinite
matrix iff (i, j) = i j22.

Lecture 12: Compressive Sensing
One of the more important signal processing techniques for signal processing has been the technique of
compressed/compressive sensing. The main motivation can be summarized as follows:



Let's say that I have a measurement that takes the form

y = Ax

where y ∈ R, A ∈ R
×n, and x ∈ R

n. This, of course, is just a linear system. The problem is now that we
consider the case where n . This system is now underdetermined, and cannot be uniquely constructed. At
first assumption, we're totally out of luck.

Where's an example of this? One of the examples they we can have this in is called tomography, of CT
scan fame. This works as follows

We can take a mass, like an organ in the body, and say that it can be modeled by some mathematical
density. For simplicity, let's just say it's (x, y). Now, we can shoot x-rays through this. The x rays go
through the cell, and can measure the thickness of (x, y) along the ray as the signal gets attenuated.

So, our measurements look something like yi =
i
(x, y)i. What I mean by this is the line integral along the

ray i.

Now, this isn't exactly an easy thing for us to model. So, how can we approach this differently? I'm going
to discretize my object (x, y) to create a vector x, where each entry corresponds to a grid element (draw
this). Now I can represent my measurements as something that looks more like the length of each ray
segment at each grid point (draw out how the integral can just be sort of written as multiplying by some of
the coefficients)

So, now my measurement can be represented in the form of yi = nj=1 aijxj = aix for some vector ai. This
puts us in the situation where we can now consider our measurement as a linear system y = Ax.

Again, our system is underdetermined if we don't take a bunch of measurements. What we really want to
do is only take a few measurements, since this is faster.

This means that I'm looking for a representation of x that is sparse with reference to my measurements. I
want just a few measurements to capture most of the information that I need.

What does this mean for a given basis B = {u1, … , un}? Well, as its a basis we have that
x = xu1u1 + + xunun, and that



[x]B =

I want most of these coefficients to be zero. We say that a vector x is -sparse with respect to a given basis
B if at most  of the above coefficients are non-zero.

Can also be captured as the 0 norm

x0 = erooeroeeetso

From here on, we say that x is -sparse, meaning that x0 .

Some other examples of where this comes about: Fourier bases - periodic signal processing. Wavelet
bases for images - (JPEG Compression). Discontinuous data can be well modeled by Haar bases (draw).

Let's return to the original problem at hand. Let's say that I know y, and I know A. I want to solve for x in
y = Ax. Now, A isn't invertible, so I can't just flip it over. Moreover, this system is underdetermined, so I
can't get a unique solution.

What I can do, however, is I can look to solve this as the sparsest possible solution. The idea behind this
is that, if I as a domain specific practitioner have done a good job taking my measurements, then it should
be the case that x is sparse.

Here's an example of an MRI image using a wavelet basis. Only a few coefficents matter!

Want to make it clear there that x being sparse is the exact same thing as saying y only needs a few
pieces of information to be accurately represented! It means that the basis that we have for x built by the
rows of A is a good (i.e. sparsifying) basis

Let's say that x is the true underlying solution we want to recover from our measurement vector y. So,
under the assumption that x is sparse, if we want to solve the problem we can do it by doing something

xu1

xun



like

i
x∈Rn

x0settoy = Ax

If we want to do this, what kinds of problems might we run into?

Well, we can think about solving it like this. Let's say a priori that we know that x is -sparse, for some
reason. If I wanted to optimize this and find a global optimum, I need to go through all (n) collections of 
coefficients to solve for this! Not good! (Side note: greedy techniques are good at finding local optima).
Doing this would take on the order of n operations, and with = 0, n = 200, and = 10 (all considered not
that big of a problem), an algorithm that solves this would take over 100 centuries to solve on a standard
laptop. (Not discussing in detail, but I'll mention here that this is an  hard problem)

Here's another issue with this approach. Let's say that x ∈ (A). Then the optimization program will recover
the vector x = 0! That's no good either!

We can re-frame this problem by considering the fact that "Although the worst sparse recovery problem
may be impossible to solve efficiently, perhaps my particular instance (or a subclass of instances) of
interest is not so hard."

The beauty of compressive sensing is that this ultimately ends up being quite true.

Now, introduce a geometric notion of the convex function as something with a bowl-like shape

The main nice property is that for convex functions , the local minima of  (where the derivatives vanish)
are also global minima.

Next we define the 1 norm.

Here I'm going to try and draw a picture of what the unit balls 0 and 1 norms look like. The 0 one is the four
dots on the axes R2, and the 1 is the inscribed diamond in it. Make a point about how now 1 is a convex
envelope of the previous function.



So, what happens if instead I try considering

i
x∈Rn

x1settoy = Ax

It turns out that this particular approximation and assumption is one of the most important mathematical
contributions of the 21st century.

This isn't a foolproof method, but it does work for many problems. It is strongly determined by the size of
the support of the sparse vector. Far from foolproof, and recovery is probabilistic (but with a sharp phase
transition!)

What's the intuition on why this works at all?



Notice that this won't work for every x, or for every matrix A! The structure of the problem plays a huge
role in the effectiveness of this approach!

Lecture 13: Matrix Completion
First, we can consider a brief review of what compressive sensing accomplishes. We can recall that if we
sought to solve an underdetermined linear system

y = Ax

under the right conditions we found that considering the approach

i
x∈Rn

x1settoy = Ax

that we got good numerical results for a wide class of sparse vectors x. That is to say that many vectors in
the right basis are compressible. They contain less information than its embedding in Rn might lead you
to think from first principles!

Let's consider now a new setting where we have a large degree of redundant information, and we might
have a hope of reconstructing an object based on limited information.

We lead by returning to the netflix problem. Suppose we have a matrix  of movie ratings, where users
correspond to the rows and the columns correspond to movies (draw this out)



Now, of course one hasn't likely seen every movie that's available on netflix. There's missing information
in this approach. But it's reasonable to infer (as we did before when I introduced PCA) that there's a good
chunk of info that's not necessary. If you liked john wick, you'll probably like john wick 2, but maybe you're
less interested in sense and sensibility and vice versa.

Now, let's return to a definition of rank. The rank of a matrix  is the amount of linearly independent
rows/columns. Let's take the row perspective.

Lets consider the i-th row of , denoted xi. Let ∈ R
×n, so xi ∈ R

n. Let's now consider a different row xj, but
say that we don't know the 1st entry of xj.

Now, if we go through entry by entry, and we have that for each entry of xi and xj that (xi) = 2(xj). Again,
we don't know that first entry of xj.

If I know that r() = 1, however, then I know that every row vector has to be parallel to xi. In this case, then
I know that the first entry of (xj)1 = 12(xi)1, and I've completed my vector.

If I had information that r() = 2, I'd need a little bit more information then! I'd probably need to measure
another row in order to determine what the first entry is. To see that you'd need to do this, consider the
case that xi is as before, but now you have x = ( ). Then if I'm missing the first entry of xj, it
could be that it could be anything since all I know is that xj is a linear combination of xi and x.

However, we're more or less on the right track now. We can now pose our problem.

Let's consider some low-rank matrix ∈ R
×n, where r() = i {, n}. Let = {(i, j)|i ∈ {1, … , }, j ∈ {1, … , n}}

(draw out a few entries of what this looks like).
I now want to sample index pairs uniformly at random, meaning I'm just going to pull a subset of these out,
and say that this random subset is .

Now that I have random pairs of indices, I can pose the matrix completion problem as follows:
from {ij}(i,j)∈, can I reconstruct ?

We're going to take a hint from the compressive sensing lecture that we had before. We know that the
rank of  is small. So, given the observation before, why don't we consider the following constrained
optimization problem?

i
∈R×n

r()settoij = ij(i, j) ∈

Ok, great. How might this work in practice? Well, we run into issues again like we did with the 0 norm.

Notice the following: The matrix = ( ) is rank 1. Let 0 be any real number. Then the matrix

= ( ) is rank 2! But we also know that = ... So matrices that are arbitrarily close to each other can

have different rank! This means that rank is a poorly behaved, non-smooth object. To do this rank
minimization problem here would be akin to doing the 0 problem with the compressive sensing approach,
and we saw that was computationally infeasible.

1 0 … 0

1 0

2 0
1

2 0



So, what do we do? Well, recall a different definition of rank. For = i{,n}i=1 iuivi, we have that
r() = ooerosires. This kind of looks like the 0 norm, doesn't it? Maybe we'll find some success if we
consider a convex relaxation of the rank.

So by direct analogy to before, we can define the following:

= i{,n}
i=1

i

This is a real matrix norm, and is called the nuclear norm of . Now, notice that I didn't take the absolute
values of i. That's because i is all positive. How is this related to other norms? Recall that the frobenius
norm was = i=1 2i. This is exactly the 2 norm on the singular values, and so this nuclear norm is exactly
the 1 norm on the singular values! We are on the right track!

Here we can define the new, actual objective function

i
∈R×n

settoij = ij(i, j) ∈

Solving this is something that requires a good amount of care algorithmically. However, we again just have
a convex function, so it has a unique local minimum! How do we know when we have enough information,
however. That is, how do we know when || is large enough to have the algorithm reconstruct the right
solution?

Theorem:
Let ∈ R

×n, and without loss of generality let n . Let = r(), and assume n. Let
⊂ {(i, j)|i ∈ {1, … , }, j ∈ {1, … , n}} be sampled uniformly with replacement. If

|| n o2(n)

for some matrix specific constant , then

i
∈R×n

settoij = ij(i, j) ∈

recovers the ground truth matrix  with high probability (very very close to 1).

I mentioned that  is a matrix specific constant however, and a lot of information is encoded in this. In
particular, there is a constant  that measures how "diffuse" the entrywise information in a matrix is.

Here's an example of when matrices aren't all that recoverable. Let

=

Notice that this is a rank 1 matrix. But if I look to sample every entry from this matrix, i'm probably going to
need to sample everything in order to pick up the only entry that matters! Most entries contain zero
information, and one entry contains all the information.

1 0 … 0

0 0 … 0

0 … 0



Contrast this with the matrix

=

Here we have a rank 1 matrix, and we could fully determine this matrix by sampling one row and then one
entry from each other row!

Let's show an example of this actually working in practice now.

Lecture 14: K-Means Clustering
We're going to be considering data x1, … , xn ∈ R

n. Now, if I have a bunch of data points, I might want to
classify the data points in space by their location and cluster points that are close to one another.

An example of this is when we saw in PCA, easily separable numbers neatly formed classes. If we picked
a data point from here, we'd want to figure out which class it belonged to by clustering our datapoints.

So, how do we go about computing this clustering? Let's assume that we have  clusters denoted 1, … , .
We want to assign points xi to clusters 1, … , . We can define the function

(1, … , ) =
i=1 xi∈

xi i22

Question: What's the minimum value of  if = n?

Each point would be its own cluster! So = 0.

Lets think about how to actually use that in practice... One thing we can consider in clustering is assuming
that we know the centers i and these are fixed. How can we get an optimal partition?
Answer: We just assign each point xj to the closest centroid i. If there's a tie, break it arbitrarily.

Now, right now we're presuming that we know the clusters a priori. What happens if we know the clusters?
We can compute the centroids i = 1|i| xj∈i

xj

1 … 1

2 … 2

n … n



First, we should determine whether or not the exact centroids are the best solutions to the problem of
centroid assignments.

Lemma: Let {a1, … , an} be a set of n points. Let x be an arbitrary point.
Then ni=1ai x22 = ni=1ai 22 + n x22 where = 1n i ai.

Proof:

We start off by recognizing that

Now as  is the centroid of a1, … , an, I have that

From here the lemma statement follows.

A corollary is that the point x that minimizes the distance to each ai is the centroid! Matches intuition, but
also important for our problem.

So, we know how to handle this problem of assignment now if we either know the clusters, or if we know
the centroids.

How can we maybe deal with this in the case that I don't know the clusters or the centroids exactly? We
have something known as Lloyd's algorithm for assignments.

Lloyd's algorithm

Initialize: pick random centers 1, … ,

Assignment: Set yi = rijxi j2

This places a datapoint xi into a cluster j by doing this minimization

Update centers

Set j = 1|j| xi∈j
xi

This is great! How well does this work in practice?

i
ai x22 =

i
ai + x22

=
i
ai 22 + 2( x)

i
(ai ) +

i
x22

=
i
ai 22 + 2( x)

i
(ai ) + n x22

i
ai =

i
(ai 1n

j
aj)

=
i
ai nn

j
aj

= n n

= 0



Well, it's a very non-convex algorithm. What does that mean?

Any sort of optimization on this object is going to be challenging (think of a ball rolling down a hill gets
stuck in the local minima)

So...

Let's consider an example where we have n data points in 5 tight clusters with radius  each separated by
a distance B. Picture looks like

Where do these points converge to? Well, we can show that Lloyd's k-means algorithm converges to
something that looks more like

1. How do we initialize? If we initialize close to the solution, we might find the optimal solution

2. Do we always find an optimal clustering? (No)
3. Convergence of the algorithm
4. What kind of data is this well suited for?



Which is not the optimal solution!

Let's think about some other algorithmic ways to do -means.

K means ++
We're staying in the same setting of considering = {xi}ni=1 as your datapoints. Now, we choose the
centers as follows:

Practically, this allows for faster convergence of Lloyds, you also usually get better cluster quality than just
pure random seeding. Very frequently used technique!

Draw on the board about how this would work...

Mention elbow method

Lecture 15: Intro to Graph Theory and Spectral
Clustering

1. Choose 1 uniformly at random from .
2. For each point x ∈  not yet chosen, compute (x) = i∈x 2 where  is the set of centers

3. Choose a new point as a center 2 with probability that a point x ∈  is chosen equal to (xseete) = (x)y∈ (y).
This enforces that the next cluster is very dissimilar to the first cluster

4. Repeat until all  centers have been chosen
5. Use standard  means clustering such as Lloyd's algorithm



Draw a picture of the following image

Motivate it by considering mutual follows on instagram or twitter. This is in the context of communities.
Strengthen this analogy by considering this connections to other universities in the area and the people
who follow each other there.

Now, how might we represent this mathematically? What can we do to build out a representation of the
local communities that might exist inside data that looks like this? We will use a tool called graphs. Graphs
are mathematical structures that model pairwise relationships between objects.

Graph definition

A graph is an ordered pair G = (V , E) where

In an undirected graph,

E ⊂ {{u, v} : u, v ∈ V , u ≠ v}

In a directed graph,

E ⊂ V × V

V  is a nonempty finite set whose elements are called vertices or nodes
E is a set of edges where each edge is an unordered (or ordered) pair of vertices depending on
whether the graph is undirected or directed (known as a digraph), respectively



so the edges are ordered pairs. The point here is that there's a sense of directionality.

Comment that a graph without self loops is a simple graph. We only consider these from here on out.

Draw a couple of simple examples of undirected graphs or directed graphs on the board. Ask how this
relates to the problem that I summarized at the start of class.

Weighted Graph

Now, sometimes we want to consider a bit more information than this in this scenario. One way that we
can do this is by adding a weight to the graph. Draw an example here. These could appear in a context of
airlines, where the vertices are airports, edges are flights, and the weight of the edges could be the costs.

Now we can consider a weight function w : E → R where now we have a graph G = (V , E, w).

Graphs as matrices

Now, in the case of any finite graph, we can consider a matrix representation of this graph. We define the
adjacency matrix of a graph G = (V , E) where |V | = n with vertices V = {v1, … , vn}. Then the adjacency
matrix of G is the matrix

A = [aij]

where aij = {
 for a simple undirected graph. This can be changed to a (vi, vj) in the case of

a digraph.

If G is weighted, its defined similarly but now aij = {

Give an example on the board for a 3 vertex graph.

Next thing I want to define is a function on a graph. A function : V → R takes in vertices and outputs a
scalar value. For a finite graph, there are only finitely many vertices, so this can actually be represented

as a vector u = . So functions on graphs are basically just vectors and vice versa.

One more matrix to define: we define a diagonal matrix  as the degree matrix, defined as
ii = e(vi) = nj=1 aij and ij = 0 for i ≠ j.

Using this, we can define the following object known as the graph Laplacian = A.

We will use this graph laplacian for some useful things, but lets first actually go over what this means (and
why it has such a suggestive name)

A Laplacian, for those who don't know, usually denoted = 2x21 + + 2x2n in n dimensions, where each of the
xi are the coordinates. In , it's just x y and .

1 {vi, vj} ∈ E

0 otherwise

w(vi, vj) {vi, vj} ∈ E

0 otherwise

(v1)

(vn)



Let's consider the 1 case where = 2x2. Now, on a 1 uniform grid with spacing , we can set the edges
between neighbors with weights wi,i1 = 12. Draw this out.

Now, if we then define our Graph laplacian out, it looks like

=

Make the point that what we really want to consider is stuff away from the boundary just to not deal with
the weird stuff. Just focusing on the interior.

Now, if functions are just vectors, what happens when I consider u for some vector u ∈ R
n?

Now, picking i away from the boundary (draw this out in more detail)

(u)i = 2ui ui+1 ui1
2

In the limit → 0, this is just exactly the centered difference definition for the second derivative, i.e.

2x2 = i
→0

(x + ) 2(x) + (x )2

Which is literally just the negative of what we have here!

Ok, so now we can interpret this graph laplacian structure a little bit. We can think of this object as being a
"second derivative" on our graph. What can we do with it?

Let's now interpret this a little bit more. Let = w for some vectors  and w. Now, notice that

w(i) = (i) = e(vi)i (j) =
j:(i,j)∈E

(i) (j)

With this in mind, let's compute .

where the third line follows from the fact that the graph is simple and the original sum was double counting
since we were going over all i and j.

I can draw a simple graph and give an example of how to evaluate something that looks like 

Eigenvalues and eigenvectors of the graph Laplacian

1 1 0 … 0

1 2 1 0 …

0 … 0 1 1

j
(i,j)∈E

=
i
(i)

j:{i,j}∈E
(i) (j)

=
{i,j}∈E

(i) ((i) (j))

=
ij:{i,j}∈E

(i) [(i) (j)] + (j)[(j) (i)]

=
ij:{i,j}∈E

[(i) (j)]2



If G is an undirected graph, we know automatically that  is a symmetric matrix. This tells us that

Now, what else can we say? We know that 0. Why?

This also gives us that all our eigenvalues are nonnegative.

Lemma: the graph Laplacian always has at least one zero eigenvalue
Proof: Let v = ( ), and consider the formula for vv.

Theorem: The multiplicity (read: number) of zero eigenvalues of the
graph Laplacian  equals the number of connected components of G

Proof: Assume that G has  connected components. Partition V  as follows into V1, … , V. We can define 
vectors as follows

i(j) = {

Without loss of generality, we can consider this in a block structure as follows:

i = = 0

Repeat this for all other i and we've shown that there are at least as many zero eigenvalues as there are
connected components.

Furthermore, one can show directly that ij = |Vi|ij, so we're getting orthogonal vectors and not double
counting.

Next, let's assume that there exists a +1 s{1, … , } that also has a zero eigenvalue.

This means that +1+1 = ij:{i,j}∈E (+1(i) +1(j))2

This requires +1 to be a constant value in its entries.

Now as +1 is nonzero on some index i since it cant be the zero vector, we can pick the component where
i ∈ Vj for whichever one of those vertices +1(i) ≠ 0. Now as +1 is constant on a subset of Vj, it follows
directly that +1j ≠ 0, so it's not orthogonal to j and is thus not another eigenvector.

1. All its eigenvalues are real

2. All its eigenvectors form an orthogonal basis to Rn

1 … 1

1 j ∈ Vi

0 ese

1 0 …

0 2

0

1

1

0



Ok, so what can the other eigenvectors and eigenvalues tell us? First thing is we can recall from courant
fischer that we can represent

i =
xv1,…,vi1

xAxxx

For the time being, let's assume that we have one connected component. This means that we only have
one zero eigenvalue.

Let's compute the second eigenvector of the Laplacian. This is given by

2 = i
x≠0,x1

ij:{i,j}∈E (xi xj)
2
i∈V x2i

This eigenvalue measures the "distance" between adjacent points with a goal of this being small, i.e. small
variability for things that are "close" in graph space (i.e. adjacent).

Let's think of graphs that have two densely connected regions that are connected by a sparse region.

Heuristically, if we decrease the edges connecting the two clusters, we're going to get closer and closer to
having two connected components (i.e. we'll have two zero eigenvalues). In this sense, the smallest non-
zero eigenvalue and its proximity to zero is a measure of how close one is to being separated. Captures
this notion of separated clustering.

We can get a stronger result than this heuristic, however, and we can talk about approximating an "optimal
cut"

Let A ⊂ V  in a graph G. Consider the indicator vector



i = {

We say that the vector  is the optimal cut if

ri∈{1,1}n

ij:{i,j}∈E
(i j)

2

We note that this measures the smallest amount of connection between two clusters (of course, we can
get smaller values for this functional if we relax our restriction on , but this captures our desired intuition)

This problem is hard to solve! NP hard in fact. We're going to add some assumptions to make this
solvable. Let's assume that we want an equal partition in our optimal cut, i.e. # of +1 nodes is equal to the
number of 1 nodes. Now, this condition implies that ni=1 i = 0.

If we relax this, however, to any function  we can see that we're really looking at something like
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Now, this could pretty clearly be zero, because that would be a constant vector. Now, using the fact that
we're considering i = 0, this is equivalent to 1. Let's also force that = n, just to avoid the case where
we're dealing with = 0.

Putting this all together, we can see that what we're actually just dealing with is a problem that looks like

i
∈Rn,1,=n
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from courant fischer! So by relaxing this problem, we can see that the second smallest eigenvalue
corresponds to a problem where we can best approximate this "optimal cut"

Now, if we want to connect this to the original clustering problem, we can just take categorizing each
cluster as y = si().

Show a computational example here. Build a stochastic block model, and include a figure where we
consider just the sign of the points and one where we include the values. We can connect this to the
eigenfunctions of 2x2

There's one last connection that we can make. We know that the eigenfunctions of 2x2 are si(x) and os(x).

If we consider a bounded domain (line segment), we also know that we can show that this is something
that just directly corresponds to increasing frequencies (draw a picture)

Now, what happens in the graph laplacian picture? It looks like we have periodic functions... so we can
directly connect these two ideas and see that the eigenfunctions of the graph laplacian actually act as
harmonics on a graph.

Lecture 16: Spectral Clustering Extended
Ok, so we've now seen that we can approximate the optimal graph partitioning through the Fiedler vector.

+1 i ∈ A

1 i A



Let's try doing some clustering of data based on this. Let's assume that G has one connected component.
We can cluster by assigning a label based on the sign of 

We don't just have to use this first vector as well. We can do other vectors and see how well this works!

If we take the function value of the vectors, now we have a new representation of our data, where each
point in our graph is assigned a vector. At this point, we can run  means clustering on the embedding,
giving us our spectral clustering.

Run the demo, vary the connectivity between the clusters, show some things about the label classification.

Ok, now clearly this in an example where I know the geometry/topology of my graph... All of my examples
were specifically the stochastic block model. What happens now if I instead just consider a set of data
x1, … , xn? Now how can I go about approaching this?

Well, first thing that I need to consider is building a graph structure of some sort. First idea:



Alright, let's think about the second approach: a  nearest neighbor graph. Connect xi to the closest  points
xj, break ties arbitrarily.

Issue: This adjacency matrix might not end up being symmetric! Or, we violate a hard and fast  parameter.
Either way, this is trouble.

How can we solve this? We instead consider a fully connected weighted graph where we modulate the
weight by some kernel.

Example: wij = e(xixj222
2
)

Now, we redefine our laplacian to be = ! Now the degree matrix depends on the degree, which is now
ji,{i,j}∈E wij = e(vi)

We get all the same observations as before, it's just that now my laplacian has the following quadratic
form:

xx =
ij,{i,j}∈E

wij(xi xj)
2

Spectral Clustering Algorithm

Input: {xi}.

Lecture 17: Least Squares Regression and LASSO,
Logistic Regression?
Lecture 18: Linear Support Vector Machines

Lecture 19: Kernel SVM

1. Build an  neighborhood graph where I connect pairwise distances that are smaller than .
Where this might run into issues: scaling! Sometimes things might be close, and sometimes things
might be far. Draw a picture of heterogeneous data with isolated clusters, and really tight clusters.

1. Compute 

2. Compute =

3. Compute the first  eigenvectors of , v1, … , v and set V = [v1 … v] ∈ R
n×

4. Let yi be the ith row of V

5. Cluster {yi} using  means, and the label of yi is the label of xi.


