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HIGHLIGHTS
• Combines non-convex Riemannian matrix completion method and a dual-basis

framework

• Comparable reconstruction to state-of-the-art algorithms

• Provable convergence framework

EUCLIDEAN DISTANCE GEOMETRY

Euclidean Distance Geometry: Given partial pairwise squared distances D = [dij ]
in a matrix, where only some entries are known, can we robustly reconstruct the
points P = [p1...pn]

T ∈ Rn×d up to rotation/translation?
Multi-dimensional Scaling (MDS): Recovers P up to rotation from full infor-
mation in D by taking a truncated eigenvalue decomposition of X = − 1
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Matrix Completion: Algorithms for computing a low-rank matrix M ∈ Rn1×n2

given a subset of the entries Ω = {(i, j) ∈ [n1] × [n2] | Mij is known}. Original
methods[1] developed were convex minimizations of the nuclear norm

min
X∈Rn1×n2

∥X∥⋆ subject to PΩ(X) = PΩ(M)

where PΩ is defined as
PΩ(·) =

∑
(i,j)∈Ω

⟨·,Eij⟩Eij

for Eij = eie
T
j . Many scalable non-convex algorithms for this problem exist.

Problems with existing methods: Distance matrices are a difficult set to optimize
over due to the triangle inequality. This leads to poor recovery results with standard
matrix completion algorithms on D.

EXISTING WORK AND GEOMETRIC STRUCTURE
Riemannian Methods for Matrix Completion [2]: A non-convex Riemannian ap-
proach to matrix completion.
• Main idea: Non-convex gradient descent scheme for matrix completion using en-

tries.

• Formulation: Wei et al. define the following optimization program

min
X∈Rn×n

⟨X−M,PΩ(X−M)⟩ subject to rank(X) = r

The algorithm is a gradient descent scheme on the manifold of rank r matrices
with a tangent space at the l-th iterate Xl = UlΣlV

T
l defined as Tl = {UlZ

T
1 +

Z2Vl|Z1,Z2 ∈ Rn×r}. To update to Xl+1, the update is taken in the gradient
descent direction projected onto the manifold Tl, then retracted back to the rank r
manifold. More specifically

Xl+1 = SVDr(Xl + ηlPTl
PΩ(M−Xl)

with SVDr defined as the truncated SVD of rank r and ηl computed through an
exact line search

• Pros: Proven convergence results, efficient implementation

• Cons: Poor recovery for the EDG problem

DUAL BASIS APPROACH
Idea: Instead of optimizing over distance matrices, move to Gram matrices for
easier computability.

Constructing Dual Basis and Sampling Operator: Following [3], accessible infor-
mation is in the form of

Dij = ∥pi − pj∥22 = ∥pi∥2 + ∥pj∥2 − 2pT
i pj = Xii +Xjj − 2Xij

Defining wα = Eα1,α1 + Eα2,α2 − Eα1,α2 − Eα2,α1 for α = (α1, α2), we can repre-
sent accessible information as ⟨X,wα⟩. Given this new basis and its Gram matrix H
defined by Hα,β = ⟨wα,wβ⟩, the dual or bi-orthogonal basis can be constructed as

vα =
∑
β

H−1
α,βwβ

This allows us to define an analogous sampling operator for the dual basis problem:

RΩ(·) :=
L

m

∑
α∈Ω

⟨·,wα⟩vα

This problem defined on Gram matrices is mathematically equivalent to standard
matrix completion on the squared distance matrix, although as RΩ is not self-adjoint
we consider a computable surrogate instead.
Defining Computable Surrogate and Optimization Program: We construct a com-
putable surrogate and its corresponding objective function as follows:

R⋆
ΩRΩ(·) :=

L2

m2

∑
α,β

⟨·,wα⟩⟨vα,vβ⟩wβ

min
X∈Rn1×n2

⟨X−M,R⋆
ΩRΩ(X−M)⟩ subject to rank(X) = r

RIEEDG
Algorithm: Fusing the dual-basis approach with the efficient Riemannian scheme
presented in [2].
• Main idea: Define a similar algorithm as in [2], but substituting our computable

surrogate operator R⋆
ΩRΩ

• Pros: Provable convergence framework given good enough initialization

• Cons: Slower time complexity with similar reconstruction results as other non-
convex algorithms [3]

Algorithm: RieEDG
Input: PΩ(D): The observed distance information; k: the dimension of the
datapoints; η: the step size
Initialize X0 = EVDk(R⋆

ΩRΩ(X)) = U0Λ0U
T
0

for l = 0, 1, 2 · · · do
11 Gl = R⋆

ΩRΩ(X−Xl)
11 Wl = Xl + ηPTl

Gl

11 Xl+1 = EVDk(Wl)
end for
Output: Xrev

NUMERICAL EXPERIMENTS
Synthetic data and Tabulated Results: Various 2- and 3-dimensional datasets
were used for testing and are referred to below in increasing size order. The objec-
tive of RieEDG is to recover the full set of points P up to orthogonal transformation
from a subset of entries of D chosen using a Bernoulli sampling model, where
each entry has a probability γ of being selected for γ ∈ [0, 1], with an expected γL
entries chosen. RieEDG outputs the Gram matrix X = PPT , from which P can
be recovered. The comparison referenced in Table is the relative error between the
recovered matrix Xrev and the ground truth matrix X in Frobenius norm averaged
over 10 trials. Each run was terminated after 500 iterations or a relative difference of
10−7 in Frobenius norm.

Dataset γ = 5% 3% 2% 1% 5% Timing (sec)
Sphere (3D) 6.2e-07 1.2e-06 9.52e-03 1.08 4.62
Swiss Roll (3D) 5.04e-07 8.84e-07 1.14e-06 0.0604 30.9
Cow (3D) 5.58e-07 8.62e-06 1.50e-06 0.0095 67.4
U.S. Cities (2D) 5.90e-07 1.613-03 0.0168 0.0796 135

Reconstructed Images: Below are images of the reconstructed datasets. From left
to right, the sampling rate goes from 5% to 1% as in the table above.
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