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Abstract

The problem of determining the configuration of points from partial distance information, known as the
Euclidean Distance Geometry (EDG) problem, is fundamental to many tasks in the applied sciences. In this
paper, we propose two algorithms grounded in the Riemannian optimization framework to address the EDG
problem. Our approach formulates the problem as a low-rank matrix completion task over the Gram matrix,
using partial measurements represented as expansion coefficients of the Gram matrix in a non-orthogonal basis.
For the first algorithm, under a uniform sampling with replacement model for the observed distance entries,
we demonstrate that, with high probability, a Riemannian gradient-like algorithm on the manifold of rank-r
matrices converges linearly to the true solution, given initialization via a one-step hard thresholding. This holds
provided the number of samples, m, satisfies m ≥ O(n7/4r2 log(n)). With a more refined initialization, achieved
through resampled Riemannian gradient-like descent, we further improve this bound to m ≥ O(nr2 log(n)). Our
analysis for the first algorithm leverages a non-self-adjoint operator and depends on deriving eigenvalue bounds
for an inner product matrix of restricted basis matrices, leveraging sparsity properties for tighter guarantees than
previously established. The second algorithm introduces a self-adjoint surrogate for the sampling operator. This
algorithm demonstrates strong numerical performance on both synthetic and real data. Furthermore, we show
that optimizing over manifolds of higher-than-rank-r matrices yields superior numerical results, consistent with
recent literature on overparameterization in the EDG problem.

1 Introduction

The rapid advancement of technology across various scientific fields has greatly simplified data collection. In many
practical applications, however, there are limitations to measurements that can lead to incomplete data. This can be
caused by geographic, climatic, or other factors that determine whether a measurement between two points can be
obtained, and as such some data may be missing [1,2]. For instance, in protein structure prediction, nuclear magnetic
resonance (NMR) spectroscopy experiments yield spectra for protons that are close together, resulting in incomplete
known distance information [3]. Similarly, in sensor networks, we may have mobile nodes with known distances only
from fixed anchors [4, 5]. In these and other scenarios, the fundamental problem is determining the configuration of
points based on partial information about inter-point distances. This problem is known as the Euclidean distance
geometry (EDG) problem, which has numerous applications throughout the applied sciences [6–15].

To formulate this problem mathematically, some notation is in order. Let {pi}ni=1 ⊂ Rr denote a set of n points
in Rr. We define the r × n matrix P = [p1,p2, ...,pn], which has the points as columns. There are two essential
mathematical objects related to P . The first object is the Gram matrix X ∈ Rn×n, defined as X = P⊤P . By
construction, X is symmetric and positive semi-definite. The second object is the squared distance matrix D ∈ Rn×n,
defined entry-wise as Dij = ∥pi − pj∥22. The reason for working with the squared distance matrix instead of the
distance matrix will become clear later. Computing D given P is conceptually straightforward. However, the inverse
problem of determining P from D is not immediately straightforward. To address this problem, we need to precisely
define what it means to identify P . Since rigid motions and translations preserve distances, there is no unique P
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corresponding to a given squared distance matrix D. From here on, we assume the points are centered at the origin,
i.e., for 1 as a column vector of ones, P1 = 0. This implies that X1 = P⊤P1 = 0. We refer to P and X with this
property as centered point and centered Gram matrix, respectively. Since the Gram matrix is invariant under rigid
motions, these assumptions allow for a one-to-one correspondence between D and X.

When we have access to all the distances, a central result in [16] provides the following one-to-one correspondence
between D and a centered X:

X = −1

2
JDJ , (1)

D = diag(X)1⊤ + 1diag(X)⊤ − 2X, (2)

where diag(·) inputs an n × n matrix and returns a column vector with the entries along the diagonal, and
J = I − 1

n11
⊤. Once X is reconstructed using the above formula, P can be computed from the r-truncated

eigendecomposition of X. It is important to note that, as previously mentioned, P is unique up to rigid motions.
This procedure for computing P from a full squared distance matrix D is known as classical multidimensional
scaling (Classical MDS) [16–19].

In many practical scenarios, the distance matrix may be incomplete, making classical MDS inapplicable for
determining the point configuration. However, notice that rank(X) ≤ r, and one can show that rank(D) ≤ r+2 [20].
This implies that when r ≪ n, which is often the case in practice, X and D are low-rank. This allows us to utilize
a rich library of tools from low-rank matrix completion. With that, one technique is to directly apply matrix
completion techniques on D [21]. Let Ω ⊂ {(i, j) | 1 ≤ i < j ≤ n} denote the set of sampled indices corresponding to
the strictly upper-triangular part of the distance matrix. Note that, since a distance matrix is hollow and symmetric,
it suffices to consider the samples in the upper-triangular part; that is, if Dij is sampled, Dji is also assumed to be
sampled. A matrix completion approach would consider the following optimization program to recover D:

minimize
Z∈Rn×n

||Z||∗

subject to Zij = Dij ∀(i, j) ∈ Ω,
(3)

where || · ||∗ denotes the nuclear norm, which serves as a convex surrogate for rank [22]. The main idea of these tools
is that, under some assumptions, the nuclear norm minimization program reconstructs the true low-rank squared
distance matrix exactly with high probability from O(nr log2(n)) randomly sampled entries [23–27]. Another set
of techniques [28, 29] focus on recovering the point configuration by using the Gram matrix as an optimization
variable, and using only partial information from the entries in D. Specifically, these works consider the following
optimization program for the EDG problem

minimize
X∈Rn×n,X=X⊤,X⪰0,X1=0

||X||∗

subject to Xii +Xjj − 2Xij = Dij ∀(i, j) ∈ Ω,
(4)

where the constraints follow from the relation of X and D in (2) and (1). Due to the challenge of working with
the constraints imposed by distance matrices, i.e., an entrywise triangle inequality that must be satisfied in order
to remain a distance matrix, this work will follow the latter approach of optimizing over the Gram matrix. We
note that, in contrast to completing the square distance matrix D which has rank at most r + 2, employing a
minimization approach based on a Gram matrix that has rank at most r implicitly enforces the constraints of the
Euclidean distances. Recent works have indicated that this approach can achieve better sampling complexity than
direct distance matrix completion [28–30].

We note that theoretical guarantees for (4) have been established in [28, 31], but still suffer from the lack of
scalability of convex techniques. A non-convex Lagrangian formulation was also proposed in [28], yielding strong
numerical results but lacking local convergence guarantees. The work in [32] uses a Riemannian manifold approach
to develop a conjugate gradient algorithm for estimating the underlying Gram matrix. The theoretical analysis
therein shows that the squared distance matrix iterates globally converge to the true squared distance matrix at
the sampled entries under three assumptions. However, the relationship between the problem parameters, such as
the sampling scheme and sampled entries, and the third assumption remains unclear, as noted in Remark III.8 of
the paper. In [30], the authors introduce a Riemannian conjugate gradient method with line search for the EDG
problem. The paper provides a local convergence analysis for the case where the entries of the distance matrix
are sampled according to the Bernoulli model given a suitable initialization. The initialization method used is
known as rank reduction, which begins with initial points embedded in a higher-dimensional space than the target
dimension. While [30] demonstrates strong empirical results for this initialization via tests on synthetic data for
sensor localization, there are no provable guarantees provided for the initialization. In this manuscript, we aim to
present a provable non-convex algorithm for the EDG problem, along with a provable initialization.
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1.1 Contributions

The main contributions of this paper are as follows:

1. Construction of two novel algorithms: We propose two non-convex iterative algorithms in a Riemannian
optimization framework for the Euclidean distance geometry problem. These algorithms are both smooth,
first-order methods on the manifold of rank-r matrices for a fixed r, and have low computational complexity per
iteration.

2. Two different initialization methods: We propose two different structured initializations from partial
measurements, and prove an error bound between the initializations and true solution. Both initializations are
relatively simple and require minimal a priori knowledge of the ground truth matrix, save from the measurements
necessary to construct the algorithm.

3. Convergence guarantees and sample complexity requirements: We provide theoretical analysis that
ensures high probability local convergence of one of the algorithms to the ground truth solution. Along with
this characterization of an attractive basin, we prove sample complexity results for the initialization methods to
guarantee the algorithm’s starting point within the attractive basin.

1.2 Notation

We briefly summarize the notation used throughout this paper below. In general, uppercase boldface scripts, such as
A, will denote matrices, lowercase boldface scripts, such as v, will denote vectors, calligraphic scripts, such as A, will
denote linear operators on matrices, and blackboard bold font, such as V, will denote vector spaces and subspaces.
X⊤ denotes the transpose of X, Tr(X) as the trace of X, ⟨A,B⟩ = Tr(A⊤B) denotes the trace inner product, and
δij denotes the Kronecker delta. We denote the (i, j)-th entry of a matrix X by Xij . By 1, we mean this to be a
column vector of ones, of a size determined by the context, and by 0 we mean either a column vector of zeros or a
matrix of zeros. ei denotes a vector of zeros except a 1 at the i-th position. We denote ∥x∥2 to be the standard l2
norm on Rn, ∥X∥F to be the Frobenius norm on Rn×n, ∥X∥ to be the operator norm of a matrix, ∥X∥∞ to be
the maximum element of X, and ∥X∥⋆ to be the nuclear norm of X. We denote ∥A∥ = sup∥X∥F=1 ∥A(X)∥F to
be the operator norm of linear operators on matrices, and λmax(X)/λmin(X) to the maximal/minimal eigenvalue
of a matrix. We denote ⊙ as the Hadamard product between two matrices. We denote the i-th row of a matrix
X by X(i), and the i-th column by X(i). We denote the universal set of indices as I and random subsets of I by
Ω. We denote the empty set as ∅. We denote the standard matrix basis as {eij}ni,j=1, where eij = eie

⊤
j , which is

zero everywhere except a 1 in the (i, j)-th entry. We denote the map vec(·) as the operation that takes in a matrix

Y ∈ Rn×n and returns a column vector, with each column of Y stacked in order, in Rn2

. We define the thin spectral
decomposition of a symmetric rank-r matrix as Y = UDU⊤, where U ∈ Rn×r and D ∈ Rr×r. We define I as the
identity operator on matrices, and I as the identity matrix. We denote the condition number κ of a rank-r matrix

Y as κ = ∥Y ∥
σr(Y ) , where σr(Y ) is the smallest non-zero singular value.

We denote the manifold of rank-r matrices as Mr, and general smooth manifolds as M. We denote the tangent
space of the ground truth solution X ∈ Mr to be T, and the tangent space of the l-th iterate in the iterative
sequences defined in Section 5 as Tl. We denote the Euclidean gradient of a function f ∈ C1(Rn) as ∇f , and the
Riemannian gradient of a function f ∈ C1(M) as grad f .

1.3 Organization

The organization of this paper is as follows. In Section 2, we discuss the requisite background information necessary
to understand the work done in this paper. This consists of a brief discussion of dual bases of a vector space,
first-order retraction-based Riemannian optimization methods, low-rank matrix completion, and discussion of EDG.
Section 3 discusses related geometric approaches in matrix completion, relevant work done in EDG, and a more
detailed discussion of geometric approaches to EDG. Section 4 is a discussion of our two proposed methodologies for
solving the EDG problem using geometric low-rank matrix completion ideas in the developed dual basis framework.
Section 5 discusses the underlying assumptions, convergence analysis, and initialization guarantees of one of the
proposed algorithms, with most proofs deferred to the Appendices. The convergence analysis leverages the discussed
dual basis structure, with properties proven in Appendix A, to get local convergence guarantees, discussed in more
detail in Appendix C. We additionally provide initialization guarantees in this section, with relevant proofs in
Appendix D. Section 6 discusses the numerical results of these algorithms. We conclude the paper in Section 7 with
a brief discussion of the work and possible future research directions.
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2 Background

In this section, we will provide some minor background necessary to understand the work done in the following
sections.

2.1 Dual Basis

In a finite dimensional vector space of matrices V, where dim(V) = n, a basis is a linearly independent set of matrices
B = {Xi}ni=1 that spans V. Any basis for a finite dimensional vector space admits a dual, or bi-orthogonal, basis
denoted B∗ = {Yi}ni=1 that also spans V, and admits a bi-orthogonality relationship

⟨Xi,Yj⟩ = δij .

Additionally, B uniquely determines B∗. The bi-orthogonality relationship allows for the decomposition of any
matrix Z ∈ V as follows:

Z =

n∑
i=1

⟨Z,Yi⟩Xi =

n∑
i=1

⟨Z,Xi⟩Yi.

We define the Gram, or correlation matrix, H ∈ Rn×n, for B as Hij = ⟨Xi,Xj⟩, and let Hij = (H−1)ij . It is
straightforward to show that Yi =

∑n
j=1 H

ijXj generates B∗, and similarly that Xi =
∑n

j=1 HijYj [33].

2.2 Riemannian Optimization

The primary setting for this work is the Riemannian manifold of fixed-rank matrices. Throughout this work, we will
only be considering square n× n matrices for simplicity and relevance to the problem of interest in this paper. For a
fixed positive integer r ≤ n, we denote the set Mr = {X ∈ Rn×n | rank(X) = r}. Although not obvious at first
glance, it is well-known that Mr is a smooth Riemannian manifold [34,35]. To make this a Riemannian manifold,
we equip it with the standard trace inner product as a metric, or ⟨A,B⟩ = Tr(A⊤B), restricted to the tangent
bundle TMr, which is the disjoint union of tangent spaces [35].

Additionally, the tangent space at a point X ∈ Mr is known and can be characterized [34–36]. For notational
simplicity, and of relevance in the context of optimization, assume that X is the ground truth solution to an objective
function. We additionally assume that X = X⊤, as all the matrices we consider are symmetric. The following ideas
can be re-stated for rectangular matrices using a singular value decomposition, but these are not the subject of this
paper. As such, we denote the tangent space at X as T, and for a sequence of iterates {Xl}l≥0, we refer to their
respective tangent spaces as Tl. To characterize T, let X = UDU⊤ be the thin spectral decomposition of X. The
tangent space T can be computed as follows:

T = {UZ⊤ +ZU⊤ | Z ∈ Rn×r}.

The tangent space can be described as the set of all possible rank-up-to-2r perturbations, represented as the sum of
a perturbation in the column and row space, and is computed by looking at first-order perturbations of the spectral
decomposition of X [34]. Additionally, we can compute the orthogonal projection of an arbitrary Y ∈ Rn×n onto
the tangent space at a point TXMr as follows [34–36]:

PTY = PUY + Y PU − PUY PU

where PU = UU⊤ is the orthogonal projection onto the subspace spanned by the r columns of U .
Optimization over Mr has been investigated in detail for quite some time, and in particular retraction-based

methods are of particular interest to this work [34,36–42]. First-order retraction-based methodologies rely on the
general principle of taking a descent step in the tangent space, followed by a retraction onto the manifold. In the
case of first-order optimization on Mr, the retraction map Hr is given by the hard thresholding operator, which is a
thin spectral decomposition that takes Y =

∑n
i=1 λiuiu

⊤
i 7→

∑r
i=1 λiuiu

⊤
i , where |λ1| ≥ ... ≥ |λn| are the ordered

eigenvalues of Y and ui are the corresponding eigenvectors of Y .
In order to construct a first-order method on Mr, we need to define the notion of a Riemannian gradient. This

object can be constructed in a greater degree of generality than our approach, but for simplicity, we will assume
that a function f : Mr → R can be smoothly extended to all of Rn×n. That is to say, if we consider f : Rn×n → R,
the Riemannian gradient of f

∣∣
Mr

, denoted grad f , for Xl ∈ Mr is given by:

grad f(Xl) = PTl
∇f(Xl),
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Mr

Xl

∇f(Xl)

gra
df(

X l)

Xl+1

T l

Figure 1: A diagram of a simple first-order retraction method on Mr. Again, ∇f(Xl) is the Euclidean gradient of f
at Xl, grad f(Xl) is the Riemannian gradient at Xl, and Xl+1 = Hr(Xl − αlgrad f(Xl)), as in (5).

where ∇f is the Euclidean gradient of f . Using this approach, we can now define a Riemannian gradient descent
iterate sequence using our retraction map, Riemannian gradient, and some step size sequence {αl}l≥0 as follows:

Xl+1 = Hr(Xl − αlPTl
∇f(Xl)). (5)

Intuitively, this algorithm seeks to look at changes in the objective function that lie, locally, along the manifold,
followed by a retraction to stay on the desired manifold. An illustration can be seen in Figure 1.

This is a simple first pass to first-order optimization on Riemannian manifolds, and is not meant to be exhaustive.
Interested readers should consult [35,37] for further details on first-order methods on matrix (and other Riemannian)
manifolds, along with convergence analysis for these algorithms.

2.3 Matrix Completion

One of the primary components this work relies on is the field of low-rank matrix completion, where a subset of
the entries of a low-rank ground truth matrix X are observed. Consider X as an n× n matrix for simplicity, with
Ω ⊂ [n]× [n] representing the set of observed indices. Here, a sampling operator PΩ : Rn×n → Rn×n is introduced,
which aggregates the observed entries of X projected onto specific basis elements eij :

PΩ(X) =
∑

(i,j)∈Ω

⟨X, eij⟩eij . (6)

If Ω does not contain any repeated indices, PΩ is an orthogonal projection operator. The standard low-rank matrix
completion problem can be phrased as follows:

minimize
Y ∈Rn×n

rank(Y ) subject to PΩ(Y ) = PΩ(X).

As minimizing the rank directly is generally a challenging problem [25, 43], relaxations of this problem are often
considered. For details on complexity class of rank constrained problems, we refer the reader to [44]. Exact
recovery of X from PΩ(X) using a convex relaxation to the nuclear norm, such as the objective described in
(3), is a well-studied problem [24, 45, 46] with strong convergence guarantees. This problem is at the core of
matrix completion literature, and has inspired work in the completion of distance matrices [28, 29]. However,
solving the convex problem is expensive for large matrices, which has led to the consideration of non-convex
methodologies to solve the underlying problem. One approach that has received a great deal of attention is the Burer-
Monteiro factorization approach, pioneered for semi-definite methods in [47], whereby a low rank matrix X ∈ Rn×n

can be factored into a product X = AB⊤ for A,B ∈ Rn×r. Minimizing ∥PΩ(X) − PΩ(AB⊤)∥2F is a common
approach, and is often dealt with using alternating minimization methods in both the noiseless and noisy case [48–51].

2.4 Dual Basis Approach to EDG

In the EDG problem, using the relation (2), we can relate each entry of the squared distance matrix to the Gram
matrix as follows: Dij = Xii +Xjj −Xij −Xji. We describe here briefly the dual basis approach introduced in [28].
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Given α = (α1, α2), α1 < α2, we define the matrix wα as follows:

wα = eα1α1
+ eα2α2

− eα1α2
− eα2α1

.

If we consider the set I = {(α1, α2), 1 ⩽ α1 < α2 ⩽ n}, it can be checked that the set {wα} is a non-orthogonal
basis for the subspace of symmetric matrices with zero row sum, denoted S = {Y ∈ Rn×n | Y = Y ⊤,Y 1 = 0}. In
fact, for any two pairs of indices α,β ∈ I, we have:

⟨wα,wβ⟩ =


4 α = β;

1 α ̸= β, α ∩ β ̸= ∅;
0 α ∩ β = ∅.

It can also easily be verified that the dimension of the linear space S is L = n(n− 1)/2. Using this basis, we can
realize each entry of the squared distance matrix as the trace inner product of the Gram matrix with the basis.
Formally, Dij = ⟨X,wα⟩ for α = (i, j). Further, we can introduce the dual basis to {wα}, denoted as {vα}, and
represent any centered Gram matrix X using the following expansion:

X =
∑
α

⟨X ,wα⟩vα.

The advantage of the dual basis representation is that it allows us to recast the EDG problem as a low-rank matrix
recovery problem where we observe a subset of the expansion coefficients. In [28], this dual basis formulation has
been used to provide theoretical guarantees for the convex program given in (4).

To make use of the dual basis approach both in theory and applications, one of the first steps is to have a
representation of the dual basis that is easier to use. The direct form of the dual basis, based on its definition, relies
on an inverse of a matrix of size L× L which requires the solution of a large linear system. In [52], it was shown
that the dual basis admits a simple explicit form

vα = −1

2

(
ab⊤ + ba⊤) , (7)

where a = ei − 1
n1 and b = ej − 1

n1 for α = (i, j). We now highlight a few operators that are related to the dual
basis approach. The first one is the sampling operator RΩ : S → S defined as follows:

RΩ(·) =
∑
α∈Ω

⟨·,wα⟩vα.

The bi-orthogonality relationship of the dual basis gives that R2
Ω = RΩ if Ω does not have repeated indices, and

that
R⋆

Ω(·) =
∑
α∈Ω

⟨·,vα⟩wα.

Due to the lack of self-adjointness, RΩ without repeated indices in Ω is not an orthogonal projection operator, and
is instead an oblique projection operator. In [53], RΩ(X) is related to the sampling operator PΩ(D) as follows:

RΩ(X) = −1

2
JPΩ(D)J , (8)

where J is as defined in Section 1. The next operator is the restricted frame operator FΩ : S → S, first studied
in [28], and defined as

FΩ(·) =
∑
α∈Ω

⟨·,wα⟩wα. (9)

This operator is self-adjoint, positive semi-definite, but unlike RΩ, does not reference the dual basis. We note that
this operator under a different name was critical to the analysis of the algorithm in [30].

3 Related Work

3.1 A Riemannian Approach to Matrix Completion

A notable non-convex approach is to utilize prior knowledge regarding the rank of X. This methodology centers
around the fact that the set of fixed-rank matrices forms a Riemannian manifold, turning the problem into an
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unconstrained optimization task over a manifold. These methodologies lose convexity, however, and generally only
local convergence guarantees can be established, done by proving the existence of attractive basins around solutions.
Various retraction-based methodologies have been used with differing metrics and geometric structures [34,36,54–58].
The analysis conducted by [36] stands out for its interpretation of its first-order method as an iterative hard-
thresholding algorithm with subspace projections and efficient numerical implementation. This implementation is
done by reducing the hard thresholding step from a thin eigenvalue decomposition of an n× n matrix to a thin QR
decomposition followed by a full eigenvalue decomposition of a far smaller 2r × 2r matrix. The convergence analysis
in this work builds on the analysis done in [36], and as such, a brief exposition of their work is provided.

In [36], the authors develop a gradient descent algorithm to solve the low-rank matrix completion problem
leveraging this Riemannian structure. The objective function used in [36] is as follows:

minimize
Y ∈Rn×n

⟨Y −X,PΩ(Y −X)⟩ subject to rank(Y ) = r. (10)

The authors used a uniform sampling at random with replacement model for recovering a subset of the indices of
the ground truth matrix. This is standard practice in existing matrix completion literature, as much of the analysis
relies on concentration inequalities for sums of random matrices to get high probability guarantees. It follows that
(10) is not equivalent to ∥PΩ(X −M)∥2F when indices in Ω repeat, as P2

Ω ̸= PΩ when this occurs. This is distinct
from [34], which minimized the Frobenius norm difference between the observed entries of the low-rank matrices to
solve the problem. Additionally, [34] demonstrates that the limit of their proposed algorithm agrees with the ground
truth in the revealed entries when projected onto the tangent space of the ground truth. However, as the sampling
operator has a non-trivial null space, noted in [34], this does not necessarily guarantee identification of the ground
truth. In contrast, [36] establishes linear convergence to the ground truth solution in a local neighborhood of the
ground truth, with high probability. After defining (10), [36] constructs a Riemannian gradient descent procedure
similar to the retraction procedure described in Section 2.2 for its solution.

In addition to this approach, the work in [36] considered two initialization schemes. One is a simple one-step

hard threshold onto Mr, and is given by X0 = n2

mHr(PΩ(M)). Additionally, a more delicate initialization can be
considered by partitioning the set Ω into S equally sized subsets, and performing one Riemannian gradient descent
step for each subset. This Riemannian resampling initialization breaks the dependence on each iterate from the
previous, and provides a more reliable initialization for large enough sample sizes. A modification of this technique,
applied to our scheme, can be seen in Algorithm 3.

3.2 Euclidean Distance Geometry Algorithms

To solve the EDG problem, various algorithms have been developed. Among them, one prominent family of algorithms
is based on semi-definite programming (SDP), which leverages the connection between squared distance matrices
and Gram matrices. To provide a concrete example of this approach, we briefly outline the method proposed in [59].
Consider the matrix V ∈ Rn×(n−1), whose columns form an orthonormal basis for the space {z ∈ Rn : z⊤1 = 0}.
The operator K is defined as:

K(X) = diag(X)1⊤ + 1diag(X)⊤ − 2X.

This definition of the operator K(X) is equivalent to the mapping of the Gram matrix to the squared Euclidean
distance matrix, as expressed in (2). In [59], the optimization program is based on the operator KV (X), which is
defined as KV (X) = V XV ⊤. The optimization problem in [59] can then formulated as follows:

minimize
X∈R(n−1)×(n−1), X=X⊤,X⪰0

∑
(i,j)∈Ω

[
(KV (V XV ⊤))ij −Dij

]2
.

We refer the reader to [59] for theoretical and numerical aspects of the above optimization program. Given that
standard SDP formulations can be computationally intensive, distributed and divide-and-conquer methods have also
been explored. For additional SDP-based formulations of the EDG problem and their applications to molecular
conformation and sensor network localization, we refer the reader to [6, 60–64].

In the context of protein structure determination, various algorithmic approaches to EDG have been developed.
One notable example is the EMBED algorithm [65–67], which comprises three main steps [68]. The first step,
known as bound smoothing, involves generating lower and upper bounds for all distances by extrapolating from the
available limits of known distances. The second step is the embed step, where distances are sampled from these
bounds to form a full distance matrix from which an initial estimate of the protein structure is obtained. The
final step involves refining this initial structure by minimizing an energy function using non-convex optimization
methods. Another approach to structure prediction is the discretizable molecular distance geometry framework,
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which can be formulated as a search in a discrete space and then uses a Branch-and-Prune method to estimate the
structure [69,70].

Another category of approaches to the EDG problem involves initially estimating a smaller portion of the point
cloud and then using this initial estimate to incrementally reconstruct the rest of of the structure. These methods
are referred to as geometric build-up algorithms [71–73]. The algorithm proposed in [74] addresses the molecular
conformation problem by adopting a divide-and-conquer strategy, where a sequence of smaller optimization problems
is solved instead of solving a single global optimization problem. Finally, we highlight algorithms that estimate
the underlying points through non-convex optimization, utilizing a combination of methods such as majorization,
alternating projection, and global continuation (transforming the optimization problem to a function with few local
minimizers) [11, 75–77]. We note that the above discussion does not comprehensively cover all EDG algorithms, and
we refer readers to [20,78] for a more detailed overview.

3.2.1 Related Geometric Approaches to EDG

The main perspective taken in this paper is in line with low-rank matrix completion approach, albeit not one that
employs the trace heuristic seen in [6, 28, 79]. This work is more in line with non-convex approaches based on
optimizing over a Riemannian manifold [32,80], and extends the Riemannian approach of [36] to the EDG basis case.

A recent work in [30] adopts a similar approach to us and considers solving the EDG problem through Riemannian
methods as well. In this work, the authors use a Riemannian conjugate method paired with an inexact line search
method to minimize the following s-stress objective function:

minimize
Y ∈Rn×d

1

2
∥W ⊙ PΩ(g(Y Y ⊤)−De)∥2F, (11)

where g is the map defined by (2), W is a weight matrix to model noisy entries, and ⊙ is the Hadamard product, and
PΩ is defined as in (6). The analysis in [30] centers around the minimization of the s-stress function in (11) using a
generalization of a Hager-Zhang line search method to a Riemannian quotient manifold. The main result in this work
is that there exists an attractive basin for (11) that, with high probability, gives linear convergence to the ground

truth provided an initialization in the basin. This result requires a Bernoulli sample complexity p > C (νr)3log(n)
n

, where ν is the coherence of the ground truth matrix and r is the rank. Our method also describes two strong
initialization candidates for the noiseless EDG recovery problem with provable high probability guarantees, with a
sample complexity that only depends quadratically on the coherence and rank.

We provide a separate convergence analysis from [30], demonstrating a robust Restricted Isometry Property of a
non-self-adjoint sampling operator, and prove local convergence for this non-orthogonal matrix completion problem.
This novel approach requires a relaxation away from the minimization of a quadratic form over a manifold, instead
considering a linearly contractive sequence in a neighborhood modeled after [36] and a surrogate step size, to be
expanded on later. This approach requires novel analysis of the dual-basis framework discussed in [28,29,31], mainly
centered around careful eigenvalue bounds in tandem with standard matrix completion tools, at a cost of slightly
worse sample complexity. Additionally, we extend the initialization techniques of [36], and show that our modified
approach can provide similar guarantees. The non-self adjoint nature of the EDG sampling operator provides a host
of challenges that are resolved through careful analysis of the EDG basis and extensions of its properties beyond
what has been discovered already. To the authors’ knowledge, this is the first non-convex method that provides high
probability guarantees on the initialization methods provided.

4 The Riemannian Dual Basis Approach to EDG

With the goal of translating the standard matrix completion problem to Gram matrix completion for EDG in mind,
the most direct adaptation of the work conducted in [36] would be defining an objective function by analogy to (10)
as follows:

minimize
Y ∈S

⟨Y −X,RΩ(Y −X)⟩ subject to rank(Y ) = r.

However, a notable challenge arises: computing the Euclidean gradient of the objective function necessitates
unavailable information in the form ⟨X,vα⟩ from R⋆

Ω(X) as

∇Y (⟨Y −X,RΩ(Y −X)⟩) = RΩ(Y −X) +R⋆
Ω(Y −X),
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where ∇Y denotes the gradient with respect to Y . To circumvent this difficulty, there has been exploration into
self-adjoint alternatives to RΩ [28, 53, 81], one of which we will expand upon shortly. These surrogates allow for
the definition of an objective function in analogy to (10), but as of now lack the requisite theoretical properties for
convergence.

The primary surrogate of interest in this work is the restricted frame operator FΩ, defined in (9). This operator
is self-adjoint, positive semi-definite, and expresses the same information as RΩ without reference to the dual basis.
Additionally, this operator under a different name was critical to the analysis of the algorithm in [30]. Using this
operator, we can define the following objective function:

minimize
Y ∈S

1

2
⟨Y −X,FΩ(Y −X)⟩ subject to rank(Y ) = r. (12)

This is a true quadratic form, minimized over Mr, and can be approached in an identical manner algorithmically as
(10). This operator motivates Algorithm 1, where the hard thresholding operator Hr is again defined as the map
from Y =

∑n
i=1 λiuiu

⊤
i 7→

∑r
i=1 λiuiu

⊤
i , where |λ1| ≥ ... ≥ |λn|:

Algorithm 1 Restricted Frame EDG Riemannian Gradient Descent

Initialization: X0 = U0D0U
⊤
0

for l = 0, 1, ... do
1. Gl = FΩ(X −Xl)

2. αl =
∥PTlGl∥2

F

⟨PTlGl,FΩPTlGl⟩
3. Wl = Xl + αlPTl

Gl

4. Xl+1 = Hr(Wl)
end for
Output: Xrev

Algorithm 1 is easily implementable and gives strong numerical results, provided in Section 6, but proof of local
convergence remains an open question. The missing analytical property that would yield local convergence is the
Restricted Isometry Property (RIP), which states that a given operator does not distort a matrix too severely when
projected on to the tangent space of the ground truth.

Remark 1. More mathematically, let KΩ be a stochastic sampling operator, such as PΩ, RΩ, or FΩ. RIP states
that with high probability

∥PTKΩPT − cPT∥ ≤ ε0,

for some ε0 > 0 and some constant c > 0. In practice, this statement is proven using non-commutative concentration
inequalities, first introduced in the matrix completion literature in [27, 45], requiring that KΩ is a sum of i.i.d.
random operators and that the expectation of PTKΩPT = cPT for some c > 0. It is well-established that PΩ possesses
this property, and in this paper we show that RΩ also exhibits RIP. The proof, seen in Theorem 5.4, is completed
using standard techniques with some specific properties of the dual bases {wα}α∈I and {vα}α∈I, and RIP for RΩ is
established with only slightly worse sample complexity than for PΩ. Proving a similar statement for FΩ is challenging,
as E[FΩ] ̸= cI. However, numerical evidence strongly indicates that ∥PTFΩPT − m

LPT∥ is in fact small for random
ground truth matrices in S, and the subsequent convergence analysis of Algorithm 1 will be the subject of future work.

To leverage the analytical properties of RΩ while sidestepping the technical challenges of its non-self-adjoint
nature, we define an algorithm by analogy to Algorithm 1 but without any reference to an objective function. As we
will show in Section 5, this algorithm will give us strong convergence guarantees with reasonable sample complexities
at a cost of interpretability. As such, we define Algorithm 2 to reconstruct a ground truth matrix X as follows:

Unlike in Algorithm 1, we cannot compute the steepest descent of an objective function in Tl, so we consider
a surrogate modeled after each of the preceding algorithms. The maximum with zero in Step 2 of the algorithm
is introduced to avoid divergence, as RΩ is not a positive semi-definite operator and the denominator cannot be
guaranteed to be positive for arbitrary points in Mr. When αl = 0 occurs, the algorithm terminates. Positive αl

is required for convergence, and the conditions are provided and characterized in Lemma C.1. This condition is
satisfied in the high-sample regime, where ε0 is small.

In both of the preceding approaches, the thin spectral decomposition in the gradient descent scheme is the most
expensive, especially when n is large. As described previously, the authors in [36] found an efficient way to reduce
the computational complexity of this decomposition from O(rn2) to O(r3) +O(nr2), substantially reducing the cost
per iteration, which we implement as well.
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Algorithm 2 Riemannian Pseudo-Gradient Descent

Initialization: X0 = U0D0U
⊤
0

for l = 0, 1, ... do
1. Gl = RΩ(X −Xl)

2. αl = max
{

∥PTlGl∥2
F

⟨PTlGl,RΩPTlGl⟩ , 0
}

3. Wl = Xl + αlPTl
Gl

4. Xl+1 = Hr(Wl)
end for
Output: Xrev

Computation of RΩ(X) can be done efficiently, with a minimal complexity per iteration. This is because
a given iterate Xl can be easily translated to its distance matrix Dl via (2), and through (8), RΩ(X) can be
computed in O(m) operations, for |Ω| = m. From [53], it can be shown that the total cost per loop is approximately
O(m) +O(n2) +O(mr) +O(nr2) +O(r3) for an n× n rank-r matrix.

5 Theoretical Analysis

In this section, we will provide the main results of this work, which are the local convergence and recovery guarantees
for Algorithm 2, presented in Theorems 5.5, 5.7, and 5.9. Prior to these guarantees, we will first introduce slightly
altered incoherence conditions for the non-orthogonal problem at hand. Pathological cases can arise where a ground
truth matrix X has few non-zero coefficients in a dual basis expansion, which can cause issues in the recovery of
said matrix from samples. This is well-studied in the standard matrix completion problem, and is captured in the
idea of incoherence with respect to the standard basis. Relating incoherence to the underlying geometry of points is
an interesting problem, but this is outside the scope of the current work.

Assumption 5.1 (Incoherence assumption). Let X ∈ Rn×n be a rank-r matrix with eigenvalue decomposition
X = UDU⊤. We assume that X is ν

4 -incoherent to the basis {wα}α∈I, ν-incoherent to its dual basis {vα}α∈I,
and ν

64 -incoherent in the standard matrix basis; that is, there exists a constant ν ≥ 1 such that for all α = (i, j) ∈ I:

∥PUeij∥F ≤
√

νr

128n
, ∥PUwα∥F ≤

√
νr

8n
, and ∥PUvα∥F ≤

√
νr

2n
. (13)

In addition to the above, we require that

∥PTeij∥F ≤
√

νr

128n
, ∥PTwα∥F ≤

√
νr

8n
, and ∥PTvα∥F ≤

√
νr

2n
. (14)

This assumption is in accordance with both the standard definitions of incoherence as ∥PUeij∥F ≤ ∥PUei∥2.
Additionally, notice that these two definitions are equivalent up to a small constant, as

∥PTwα∥F = ∥PUwα +wαPU − PUwαPU∥F ≤ 3 ∥PUwα∥F ,

where the first inequality follows from the triangle inequality and the self-adjointness of PUwα. As such, we pick a
ν large enough such that the inequalities in (13) and (14) hold. As in [36], we note that the first condition above
implies the following:

∥PUeij∥2F = ⟨PUeij ,PUeij⟩ = ⟨PUeij , eij⟩ = Tr (eijejiPU ) = ⟨PU , eii⟩ =
∥∥∥U (i)

∥∥∥2
2
.

This indicates that
∥∥U (i)

∥∥2
2
≤ νr

128n , which will be relevant when discussing the initialization of Algorithm 2 using a
trimming step in Algorithm 4.

Remark 2. We want to note that the first assumption in (13) actually implies the next two. That is to say, if
∥PUeij∥2 ≤

√
νr

128n , then by the triangle inequality

∥PUwα∥F ≤ 4 max
(i,j)∈I

∥PUeij∥F ≤
√

νr

8n
.
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To see the last result, notice that

∥PUvα∥F =

∥∥∥∥∥∥PU

∑
β∈I

Hαβwβ

∥∥∥∥∥∥
F

≤
∑
β∈I

∣∣Hαβ
∣∣ ∥PUwβ∥F

≤
√

νr

8n

∑
β∈I

∣∣Hαβ
∣∣ ,

and as
∑

α∈I |Hαβ| ≤ 2 from Lemma A.6, the claim follows. A similar proof shows the same relationship for the
equations in (14).

Additionally, we make an assumption in accordance with [36]:

Assumption 5.2. Let X ∈ Rn×n be a rank-r matrix. We assume that an absolute numerical constant µ1 such that

∥X∥∞ ≤ µ1

√
r

n2
∥X∥ . (15)

Remark 3. Notice that this condition is equivalent up to scaling factors for a similar assumption in [57], which
itself can be upper bounded by a similar coherence condition in [25]. In fact, we can relate µ1 directly to ν as follows.
For simplicity and relevance to our problem, let X ⪰ 0, and notice that

∥X∥∞
∥X∥

=
1

∥X∥
max
ij

|Xij |

=
1

∥X∥
max
ij

∣∣∣∣∣∑
kl

UikDklUjl

∣∣∣∣∣
≤ max

ij

r∑
k=1

∣∣∣∣Uik
λk

λ1
Ujk

∣∣∣∣
≤ max

ij

r∑
k=1

|UikUjk|

≤
√ ∑

1≤k≤r

|Uik|2
√ ∑

1≤k≤r

|Uik|2

≤ νr

128n
,

where the penultimate inequality follows from Cauchy-Schwartz, and the final inequality from (13), indicating that in

a worst-case scenario µ1 ≤ ν
√
r

128 . This property is ultimately separate from the definition of ν, but at the very least it
can be upper bounded as a function of ν.

Additionally, we are typically interested in large n. Assuming that n ≥ 3 produces uniform results for several
bounds in the appendix, and is formally stated as an assumption.

Assumption 5.3. For the given ground truth rank-r matrix X ∈ Rn×n, we assume that n ≥ 3.

Throughout the remainder of this work, we will assume that our ground truth matrix X ∈ S satisfies both
Assumptions 5.1 and 5.2 with O(1) constant factors ν and µ1. As in [36], we identify a neighborhood in Mr around
which any initial guess in this neighborhood converges linearly to the true solution with high probability.

As mentioned previously, the most critical property for convergence of Algorithm 2 is RIP. This theorem provides
the conditions needed for RIP of RΩ:

Theorem 5.4 (Restricted Isometry Property (RIP) for PTRΩPT). With probability at least 1− 2n1−β,

L

m

∥∥∥PTRΩPT − m

L
PT

∥∥∥ ≤
√

8βν2r2n log(n)

3m
,
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for m ≥ 8
3βν

2r2n log(n). In particular,

L

m

∥∥∥PTRΩPT − m

L
PT

∥∥∥ ≤ ε0,

for any ε0 > 0 if m ≥ 8
3β
(

νr
ε0

)2
n log(n). Additionally, under the same conditions as above, we also have

L

m

∥∥∥PTR⋆
ΩPT − m

L
PT

∥∥∥ ≤ ε0.

Proof sketch. This result is primarily a consequence of Theorem A.1, the non-commutative Bernstein inequality. As
E(RΩ) =

m
L I, we see that E(PTRΩPT) =

m
LPT, and the rest of the proof is leveraging specific properties of the dual

bases {wα} and {vα} to prove concentration of PTRΩPT around its expectation. See Appendix B.1 for details.

This leads us into the following theorem, which is the crux of this work. Theorem 5.5, stated with a brief proof
outline in the main text, describes a local attractive basin around the ground truth solution, provided that PTRΩPT
exhibits RIP. With high probability, the algorithm will converge to the ground truth from any initialization in this
attractive basin. The full proof is delayed to Appendix C.1.

Theorem 5.5 (Local Convergence of Algorithm 2). Let X ∈ Rn×n be the measured rank-r matrix and let T be the
tangent space of Mr at X. Suppose that ∥∥∥∥ LmPTRΩPT − PT

∥∥∥∥ ≤ ε0 (16)

∥Xl −X∥F
σmin(X)

≤
√
mε0

16n5/4
√
βνr log n

(17)

∥RΩ∥ ≤ m

L
+ 4

√
8m log(n)

n
(18)

∥RΩPT∥ ≤ m

L
+

m
√
n

L

√
βνrn log(n)

3m
(19)

∥PTRΩ∥ ≤ m

L
+

4m
√
n

L

√
βνrn log(n)

3m
, (20)

where ε0 is a constant satisfying

δ =
18ε0

1− 4ε0
< 1.

Then the algorithm converges linearly as the iterates satisfy

∥Xl+1 −X∥F ≤ δl∥X0 −X∥F.

Proof sketch of Theorem 5.5. The theorem begins first by simple linear algebra, as we have

∥Xl+1 −X∥F = ∥Xl+1 −Wl −X +Wl∥F
≤ ∥Xl+1 −Wl∥F + ∥X −Wl∥F
≤ 2∥Wl −X∥F,

where the last inequality follows from Xl+1 being the best rank-r approximation to Wl by Eckart-Young-Mirsky [82].
Next, plugging in Wl = Xl + αlPTl

Gl, we see that

∥Xl+1 −X∥F ≤ 2 ∥Xl + αlPTl
Gl −X∥F

= 2∥Xl −X − αlPTl
RΩ(Xl −X)∥F

≤ 2∥(PTl
− αlPTl

RΩPTl
)(Xl −X)∥F︸ ︷︷ ︸

I1

+ 2∥(I − PTl
)(Xl −X)∥F︸ ︷︷ ︸
I2

+ 2|αl|∥PTl
RΩ(I − PTl

)(Xl −X)∥︸ ︷︷ ︸
I3

.

12



The remainder of the proof is in the bounding of I1, I2, and I3. I1 is proven by showing that in a neighborhood of
the solution, defined by (17), a local form of RIP for RΩ holds if (16) is true. This proof leverages the assumptions
made in (18), (19), and (20). I2 follows from the neighborhood assumption of (17) in tandem with Lemma E.1,
and I3 follows from bounds on the step size (seen in Lemma C.1), the assumption in (20), and Lemma E.1. The
assumptions in (16), (18), (19), and (20) are all proven via high probability guarantees using Theorem A.1. The
technical details are deferred to the appendix, but Figure 5 highlights the main dependencies of each lemma and
how they work into the overall convergence. See the full proof in C.1.

Theorem A.1
Non-commutative

Bernstein Inequality

Section A
Properties of
the dual basis

Theorem 5.4
RΩ RIP

Lemma B.3
Local RIP of RΩ

Lemma C.1
Stepsize bound

I3 bound

I1 Bound

I2 bound

Lemma E.1
Projection
bounds [36]

Lemma 5.6
One-step hard
threshold bound

Theorem 5.5
Local Convergence
of Algorithm 2

Lemma B.4
Asymmetric
RIP of RΩ

Lemma D.1
Trimming bound

Theorem 5.9
Resampling
initialization
guarantees

Theorem 5.7
One-step hard
thresholding
initialization
guarantees

Figure 2: This diagram is a schematic of the overall proof of convergence. Arrows indicate how results depend on
one another, and how they link together to form the overall proof of convergence. Not every exact dependency is
shown in this figure for legibility purposes, instead focusing on the key pieces of the overall flow of the argument.

In Theorem 5.5, the linear convergence rate required that ε0 < 1
22 , which is satisfied for m > 1300ν2r2n log(n),

a smaller constant factor than that required of the following initialization guarantees. That is to say, the local
neighborhood guarantees are stricter in practice than the RIP requirement.

5.1 Initialization

Given that the convergence of this algorithm is only local, initialization is important to consider in the context of
sample complexity. The simplest initialization, a hard thresholding to Mr of the measured information, provides a
reasonable starting point. The following theorem describes how close such an initialization might be to the ground
truth.

Lemma 5.6 (Initialization via One Step Hard Thresholding). Let X ∈ Rn×n be the underlying measured rank-r
matrix, and let X0 = L

mHr(RΩ(X)) with Ω = m ≥ 40
3 βn log n. It follows that with probability at least 1− 2n1−β that

∥X0 −X∥F ≤
√

320r2µ2
1n log(n)

3m
∥X∥ . (21)

Proof. See Section D.1.

This result shows that with probability at least 1− 2n1−β , the assumption of Lemma B.3 is satisfied if

m ≥ 170
κµ1

√
βνr3

ε0
n7/4 log(n),

where κ = ∥X∥
σmin(X) is the condition number of X.

This leads into the following theorem, which is one of the primary results of the work.
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Theorem 5.7 (Recovery Guarantee I). Suppose |Ω| = m with the indices sampled uniformly with replacement.
Given an initialization of X0 = L

mHr(RΩ(X)) for the rank-r, ν-incoherent ground truth matrix X with condition
number κ, and given

m ≥ max

{
8

3

√
βν3r

ε0
, 170κµ1n

3/4

} √
βνr3

ε0
n log(n),

with β > 1, then Algorithm 2 linearly converges to the ground truth X with probability at least 1− 10n1−β.

Proof. This follows from taking the local neighborhood assumption seen in Theorem 5.5. By setting the bound
produced in Lemma 5.6 to be less than required for local convergence, the result follows after some minor algebra
and taking the maximum with the sample complexity requirements seen in Theorem 5.4.

This naive one-step hard threshold initialization can be improved again following a construction in [36], using a
resampling and trimming algorithm, both defined as follows:

Algorithm 3 Riemannian Resampling for Initialization

Partition Ω into S + 1 equal groups Ω0,Ω1, ...,ΩS , each of size m̂
Set Z0 = Hr

(
L
m̂RΩ0(X)

)
for l = 0, 1, ..., S − 1 do
1. Ẑl = trim(Zl)

2. Zl+1 = Hr

(
Ẑl +

L
m̂PT̂l

RΩl+1
(X − Ẑl)

)
end for
Output: X0 = ZS

Algorithm 4 trim

Input: Zl = UlDlU
⊤
l

Output: Ẑl = AlDlA
⊤
l , where A

(i)
l =

U
(i)
l∥∥∥U(i)
l

∥∥∥
2

min
{∥∥∥U (i)

l

∥∥∥
2
,
√

νr
n

}

This trimming algorithm is a projection onto the space of matrices that are ν-incoherent with respect to
the standard matrix basis, not necessarily with respect to the basis {wα}α∈I. However as noted previously, the
incoherence parameter differs by at most an O(1) constant, so this is a reasonable surrogate, especially for large n.

We can analyze Algorithm 3 and get the following result:

Lemma 5.8 (Riemannian Resampling Result). Let X ∈ Rn×n be the measured rank-r matrix with condition number
κ. Let S be the number of partitions specified in Algorithm 3, and let m̂ = m

S+1 . Then for all β > 1, with probability

at least 1− (2 + 4S)n1−β the output of Algorithm 3 satisfies

∥X0 −X∥F ≤
(
5

6

)S
σmin(X)

256κ2
,

provided that m̂ ≥ max
{
(1.61× 105)ν2, (7.77× 105)κ4µ2

1

}
κ2r2n log(n).

Proof. See D.2.

Assuming that m ≥ βνrn log(n), which is relaxed from the requirement for RIP seen in Theorem 5.4, Lemma 5.8
shows that taking

S ≥ 6 log

(
n3/4

16ε0

)
,

the third condition in Lemma B.3 can be satisfied with probability at least 1−
(
6 + 24 log

(
n3/4

16ε0

))
n1−β for a large

enough sample complexity. This leads to the final recovery guarantee, attenuating the n dependence in the sample
complexity.
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Theorem 5.9. Let X ∈ Rn×n be the measured rank-r, ν-incoherent matrix with condition number κ, and suppose
that |Ω| = m is a set of sampled indices from I uniformly at random with replacement. Let X0 be the output
of Algorithm 3. Then for any β > 1, the iterates of Algorithm 2 linearly converge to X with probability at least

1−
(
6 + 24 log

(
n3/4

16ε0

))
n1−β provided that

m ≥ max

{
8ν2

3ε20
, (2.3× 105)ν2 log

(
n3/4

16ε0

)
, (1.2× 106)κ4µ2

1 log

(
n3/4

16ε0

)}
κ2r2n log(n).

Proof. As in Theorem 5.7, this proof follows from the local neighborhood conditions of Theorem 5.5, combined with
the sample complexity results from Lemma 5.8 and Theorem 5.4. The constants are not optimized, and could be
further improved.

6 Numerical Results

In this section, we test the proposed algorithms on synthetic and real data.

6.1 Synthetic Data Experiments

To test Algorithms 1 and 2, various two and three dimensional datasets were used, and are referred to in Table 1
with their corresponding sizes. The goal of Algorithms 1 and 2 is to recover the full set of points P up to orthogonal
transformation by sampling the entries above the diagonal of D uniformly with replacement, with a total of γL
entries chosen for γ ∈ [0, 1]. Algorithm 2 reconstructs the Gram matrix X = P⊤P , from which P can be recovered.
The comparison referenced in Table 1 is the relative error between the recovered matrix Xrev and the ground truth
matrix X in Frobenius norm. Each run was terminated at either 1000 iterations or when a relative Frobenius norm
difference between iterates of 10−5 was achieved.

Table 1: Relative recovery error ∥X −Xrev∥F / ∥X∥F between the recovered Gram matrix and the true Gram
matrix averaged over 25 trials using Algorithms 1, 2, and the non-convex algorithm in [28].

Dataset
γ

10% 7% 5% 3% 2% 1%

Algorithm 1
Sphere (3D, n = 1002) 2.92e-05 3.69e-05 6.01e-05 1.28e-04 6.82e-03 9.11e-01
Cow (3D, n = 2601) 3.38e-05 4.06e-05 4.89e-05 7.61e-05 1.07e-04 8.60e-03
Swiss Roll (3D, n = 2048) 2.92e-05 3.97e-05 5.06-05 7.71e-05 1.21e-04 5.52e-02
U.S. Cities (2D, n = 2920) 4.10e-05 4.67e-05 2.01e-03 6.94e-03 1.63e-02 6.08e-02

Algorithm 2
Sphere (3D, n = 1002) 1.53e-05 3.86e-05 2.11e-04 7.88e-02 2.29e-01 1.78e+00
Cow (3D, n = 2601) 4.15e-02 3.40e-02 6.28e-02 1.76e-01 3.60e+00 7.73e-01
Swiss Roll (3D, n = 2048) 8.34e-06 1.46e-05 3.00e-05 1.52e-03 2.82e-01 9.73e-01
U.S. Cities (2D, n = 2920) 3.02e-02 1.23e-01 1.46e-01 1.86e-01 3.13e-01 8.35e-01

Non-convex algorithm in [28]
Sphere (3D, n = 1002) 6.14e-06 9.86e-06 1.36e-05 3.04e-05 6.18e-05 1.00e-01
Cow (3D, n = 2601) 5.73e-06 7.66e-06 1.06e-05 1.65e-05 2.11e-05 4.46e-05
Swiss Roll (3D, n = 2048) 2.19e-06 1.22e-06 1.01e-06 1.87e-06 1.06e-06 3.34e-05
U.S. Cities (2D, n = 2920) 4.09e-07 6.09e-07 8.19e-07 1.32e-06 2.30e-06 4.69e-06

In addition to the relative error comparison between the recovered Gram matrix and the ground truth Gram

matrix, we compute the root mean square error (RMSE), defined as
√

1
n∥Prev − P ∥2F between the recovered point

cloud Prev following a Procrustes realignment with the ground truth P , under the same experimental parameters as
with the Gram matrix recovery. The results are compiled in Table 2.

As indicated by these experiments, Algorithm 1 more reliably reconstructs the underlying datasets from distance
samples than Algorithm 2, but both are outperformed by the non-convex algorithm in [28]. However, with the
non-convex algorithm in [28] there is little hope of ever conducting local convergence analysis of this algorithm,
whereas Algorithm 2 has been proven to exhibit local convergence. It remains to be seen if Algorithm 1 will be
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Table 2: RMSE between Prev and P averaged over 25 trials using Algorithms 1, 2, and the non-convex algorithm
in [28].

Dataset
γ

10% 7% 5% 3% 2% 1%

Algorithm 1
Sphere (3D, n = 1002) 2.06e-05 2.61e-05 4.24e-05 9.07e-05 4.82e-03 7.14e-01
Cow (3D, n = 2601) 3.98e-05 4.89e-05 6.08e-05 9.25e-05 1.31e-04 1.24e-02
Swiss Roll (3D, n = 2048) 2.46e-04 3.36e-04 4.26e-04 6.48e-04 1.13e-03 4.92e-01
U.S. Cities (2D, n = 2920) 7.12e-04 8.13e-04 5.39e-02 1.86e-01 4.37e-01 1.70e+00

Algorithm 2
Sphere (3D, n = 1002) 1.08e-05 2.72e-05 1.49e-04 5.37e-02 1.42e-02 1.24e+00
Cow (3D, n = 2601) 6.67e-02 7.81e-02 1.38e-01 2.49e-01 5.87e-01 5.52e-01
Swiss Roll (3D, n = 2048) 6.91e-05 1.21e-04 2.51e-04 1.24e-02 1.86e+00 1.34e+01
U.S. Cities (2D, n = 2920) 9.94e-01 3.89e+00 5.10e+00 6.25e+00 7.77e+00 1.13e+01

Non-convex algorithm in [28]
Sphere (3D, n = 1002) 4.29e-06 6.94e-06 9.61e-06 2.14e-05 4.37e-05 7.10e-02
Cow (3D, n = 2601) 8.86e-06 1.19e-05 1.75e-05 2.70e-05 3.47e-05 7.08e-05
Swiss Roll (3D, n = 2048) 2.02e-05 1.10e-05 8.90e-06 1.66e-05 9.32e-06 2.96e-04
U.S. Cities (2D, n = 2920) 8.01e-06 1.40e-05 1.87e-05 3.11e-05 5.18e-05 1.13e-04

provably locally convergent, as determining a high-probability bound on ∥PTFΩPT − cPT∥ for some c > 0 has
proven challenging. As such, more practical utility lies in Algorithm 1 and [28] than in Algorithm 2, but the strong
theoretical results provided by Algorithm 2 will guide future work for convergence analysis of Algorithm 1 and other
self-adjoint surrogates for RΩ.

6.2 Experiments on Real Data

Additional numerical experiments have been conducted on proteins, a common application of EDG, following the
structured sampling method seen in [83]. The sampling method on n points has three different classes of points: m
pseudoanchors, 1 central anchor, and n−m− 1 mobile nodes. The central anchor, corresponding to a row/column
of the squared distance matrix, is fully known; that is, the distance between the central node and all n points is
revealed in the masked square distance matrix. The pairwise distances between the pseudoanchors are sampled with
a Bernoulli probability γ ∈ [0, 1] for each entry, and each mobile node is connected uniformly at random to k of the
pseudoanchors. None of the distances between mobile nodes are known. The Gram matrix X is then reordered
into the following pattern: the first m rows/columns are the rows/columns corresponding to the pseudoanchors, the
m+ 1-th row/column corresponds to the central anchor, and the remaining n−m− 1 columns/rows correspond to
the mobile nodes. This is illustrated in the figure below:

E

F⊤

F

G

Figure 3: Structured sampling method for distance matrices proposed in [83] for the experiments.

More specifically, E is sampled according to an entry-wise Bernoulli distribution with parameter γ ∈ [0, 1], and in
each column of F , k entries are sampled uniformly without replacement. G is not known at all for this experiment.

Three proteins were investigated in this experiment, identified as 1PTQ, 1AX8, and 1UBQ. These proteins were
downloaded from the Protein Data Bank [84]. For all three proteins, we select m = 20 anchors and space them
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uniformly throughout [1, n] where n is the number of atoms in the protein. In practice, domain knowledge allows for
better anchor selection which can improve algorithmic performance. For each of these proteins, we set the column
sample number k ∈ [6, 9], and we select the E block Bernoulli rate γ ∈ [.1, .5]. We additionally run this experiment
with an assumed ground truth rank for X of both 3 and 4, as overparameterization has been shown previously to
improve numerical performance for sensor network localization problems [85,86].

We first show a table indicating that increasing the rank of Mr from 3 to 4 improves the numerical performance in
this structured sampling setting using Algorithm 1. For this experiment, we will look at the protein 1PTQ (n = 402),
and we fix the E block rate γ = .3, seen in Table 3. This experiment and all others following were averaged over 25
trials, each lasting for 10000 iterations or until a relative difference in Frobenius norm between iterates of 10−5 was
achieved.

Table 3: RMSE between Prev and P averaged over 25 trials for the protein 1PTQ using Algorithm 1, each trial run
for 10000 iterations or until a 10−5 relative difference in Frobenius norm is achieved.

Column samples E block rate Rank RMSE Column samples E block rate Rank RMSE
6 .3 3 2.56 6 .3 4 0.324
7 .3 3 1.51 7 .3 4 0.211
8 .3 3 0.915 8 .3 4 0.134
9 .3 3 0.712 9 .3 4 0.102

This experiment is in line with existing literature on overparameterization aiding reconstruction, as this provides
clear indication that the reconstruction of the ground truth improves with higher rank. As such, we will set the rank
of Mr to 4 for the remainder of the experiments. Next, we test to see if the E block rate parameter γ exhibits a
substantial performance effect on the final RMSE, seen in Table 4.

Table 4: RMSE between Prev and P averaged over 25 trials for the protein 1PTQ using Algorithm 1, each trial run
for 10000 iterations or until a 10−5 relative difference in Frobenius norm is achieved.

Column samples E block rate RMSE Column samples E block rate RMSE
6 .1 0.347 8 .1 0.142
6 .2 0.379 8 .2 0.143
6 .3 0.324 8 .3 0.134
6 .4 0.326 8 .4 0.134
6 .5 0.329 8 .5 0.121

7 .1 0.209 9 .1 0.107
7 .2 0.191 9 .2 0.104
7 .3 0.211 9 .3 0.102
7 .4 0.195 9 .4 0.0954
7 .5 0.200 9 .5 0.0987

From the experiment in Table 4, increasing the E block rate does not greatly improve in the final RMSE following
reconstruction. From a total number of samples perspective, this is not surprising, as for m = 20, the expected
number of samples in the E block for γ = 0.1 is 38, and for γ = 0.5 the expected number is 190. Given n = 402 for
this dataset, L = 80601, and the relative difference in total number of visible samples is less than two tenths of a
percent. Since this parameter does not demonstrate a strong effect on convergence of Algorithm 1, we will now just
show the remaining experiments for the proteins 1AX8 and 1UBQ with the E block rate γ = 0.3, seen in Table 5.

Table 5: RMSE between Prev and P averaged over 25 trials for the proteins 1PTQ, 1AX8, 1UBQ using Algorithm 1,
each trial run for 10000 iterations or until a 10−5 relative difference in Frobenius norm is achieved.

1PTQ (n = 402) 1AX8 (n = 1003) 1UBQ (n = 660)
Column Samples RMSE Column Samples RMSE Column Samples RMSE
6 0.324 6 0.915 6 0.409
7 0.211 7 0.435 7 0.266
8 0.134 8 0.269 8 0.205
9 0.102 9 0.201 9 0.177

These experiments indicate strong reconstruction ability with Algorithm 1 in this structured sampling setting.
The dependence on the number of column samples in RMSE following reconstruction is visible as well across the
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Figure 4: Target structure (in blue) and numerically estimated structure (in orange) following 100000 iterations of
Algorithm 1. (Left) Target structure 1AX8, γ = 0.3 and k = 6 (RMSE = 0.014). (Right): Target structure 1AX8,
γ = 0.3 and k = 6 (RMSE = 0.06).

experiments. This is expected from the perspective of total entries viewed in the underlying matrix, as the majority
of the accessible connectivity information is stored in the F block in this sampling setup.

7 Conclusion and Future Work

In this work we proposed a novel approach for solving the EDG problem using a matrix completion approach on the
manifold of rank-r matrices in Algorithm 2. We derived local linear convergence guarantees for this non-convex
Riemannian gradient-like algorithm, and with this approach we provided two provably convergent initialization
techniques when considering uniformly sampled distances. To the authors’ knowledge, this is the first work to
provide such initialization methods non-convex approaches to the EDG problem. The convergence analysis of
this algorithm was predicated on understanding properties of a non-self-adjoint sampling operator, which required
novel analysis of EDG-specific bases. We provided numerical results for this method to underline its efficacy in
the high-sampling regime for the EDG problem. In addition to the provably convergent Algorithm 2, we provided
an additional algorithm, Algorithm 1, that is a true first-order method on the manifold of rank-r matrices. This
algorithm, although currently lacking in convergence guarantees, exhibited better numerical performance than the
provably convergent one, performing nearly as well as some existing methods. Finally, we numerically investigated a
structured sampling method relevant to the sensor network localization and protein structure problems, and studied
how Algorithm 1 performed numerically in this setting on real-world data. We showed that it exhibited strong
reconstruction performance in this new sampling framework, opening the door to future investigation.

One future goal will be a full characterization of the convergence of Algorithm 1, as this remains an open
question. This will be important to investigate due to its stronger numerical performance. We are also interested in
reconstruction of matrices expanded in more general non-orthogonal bases, and developing guarantees based on
linear-algebraic properties similar to those investigated in this work. Additionally, this work relied on a uniform
sampling with replacement model. Oftentimes, real world models for EDG or sensor network localization rely on
different sampling models, such as nearest neighbor sampling. We are interested in seeing how we can extend this
work and gain theoretical guarantees in the direction of non-uniform sampling models, alongside motivating other
algorithmic developments.
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A Properties of the dual bases and Non-Commutative Bernstein In-
equality

This section of the appendix details technical results about the specific dual bases, {wα}α∈I and {vα}α∈I. These
are needed to prove various technical lemmas throughout the work, but are particularly important in the proof of
Theorem 5.4. Additionally, we provide a variant of the non-commutative Bernstein inequality leveraged throughout
this work.

Theorem A.1 (Operator Bernstein Inequality [45]). Let Xi, i = 1, ...,m be i.i.d, zero-mean, matrix-valued random
variables, and let ρ2i ≥ max {E (XiX

⋆
i )) ,E (X⋆

i Xi))}. Assume there exists a c ∈ R such that ∥Xi∥ ≤ c almost
surely. Then for t <

∑m
i=1

ρi

c ,

P

(∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥ > t

)
≤ 2n exp

(
− t2/2∑m

i=1 ρ
2
i + ct/3

)
.

If we assume that ρ21 = ... = ρ2m = V0 and let V = mV0, then for t < V
c this simplifies to

P

(∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥ > t

)
≤ 2n exp

(
−3t2

8V

)
. (22)

One result that will be used throughout this work is a technique for constructing eigenvalue bounds through a
vectorization technique. This result is as follows.

Lemma A.2 (Vectorization Technique). Let {Zk}mk=1 be a basis for some subspace V ⊂ Rn×n of dimension m, and

let G = [⟨Zi,Zj⟩] ∈ Rm×m, and let ZV ∈ Rn2×m be the matrix where the k-th column vector is vec(Zk). Then for
any Y ∈ Rn×n

max
∥Y ∥F=1

m∑
k=1

⟨Y ,Zk⟩2 = λmax(G).

Proof of Lemma A.2. We can see that

max
∥Y ∥F=1

m∑
k=1

⟨Y ,Zk⟩2 = max
∥Y ∥F=1

m∑
k=1

(
vec(Y )⊤vec(Zk)

) (
vec(Zk)

⊤vec(Y )
)

= max
∥Y ∥F=1

vec(Y )⊤

(
m∑

k=1

vec(Zk)vec(Zk)
⊤

)
vec(Y )

= max
∥Y ∥F=1

vec(Y )⊤ZVZ
⊤
V vec(Y ).

As for any matrix A ⪰ 0, max∥x∥2=1 x
⊤Ax = λmax(A), it follows that max∥Y ∥F=1

∑m
k=1⟨Y ,Zk⟩2 = λmax(ZVZ

⊤
V ).

Now, as for any A ∈ Rr×s, λmax(AA⊤) = λmax(A
⊤A), we see that

max
∥Y ∥F=1

m∑
k=1

⟨Y ,Zk⟩2 = λmax(ZVZ
⊤
V ) = λmax(Z

⊤
V ZV) = λmax(G).

This concludes the proof.
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Lemma A.3 (Spectral norm of RΩ). For m ≥ 8
3βn log(n) and with probability at least 1− 2n1−β,

∥RΩ∥ ≤ m

L
+ 4

√
8m log(n)

3n
.

Proof of Lemma A.3. Compared to analogous sampling operators in matrix completion, RΩ is not self-adjoint. As
such, it cannot be decomposed into a sum of orthogonal projection operators. This means that the operator norm
∥RΩ∥ cannot be bounded via a counting argument like in [45], as that would produce an upper bound for the
maximum eigenvalue but not the maximum singular value. As such, we will proceed by using Theorem A.1 to prove
a bound for

∥∥RΩ − m
L I
∥∥. To do so, let

Tα = ⟨·,wα⟩vα − 1

L
I.

This object is zero-mean, and RΩ − m
L I =

∑
α∈Ω Tα. We now need bounds on ∥Tα∥, ∥E[TαT ⋆

α ]∥, and ∥E[T ⋆
αTα]∥.

For the first, notice that

∥Tα∥ =

∥∥∥∥⟨·,wα⟩vα − 1

L
I
∥∥∥∥

≤ ∥⟨·,wα⟩vα∥+
1

L

≤ ∥wα∥F∥vα∥F +
1

L

≤ 2√
2
+

1

L

≤ 2 =: c,

where the third to last inequality follows from Lemma A.6 and the fact that ∥wα∥F = 2. Next, notice that

E[T ⋆
α Tα] =

1

L

∑
α∈I

⟨·,wα⟩⟨vα,vα⟩wα − 1

L2
I, E[TαT ⋆

α ] =
1

L

∑
α∈I

⟨·,vα⟩⟨wα,wα⟩vα − 1

L2
I.

Now, notice that

∥E[TαT ⋆
α ]∥ =

∥∥∥∥∥ 1L∑
α∈I

⟨·,vα⟩⟨wα,wα⟩vα − 1

L2
I

∥∥∥∥∥
≤ 1

L
max

∥X∥F=1

∑
α∈I

⟨X,vα⟩2⟨wα,wα⟩+
1

L2

≤ 4

L
max

∥X∥F=1

∑
α∈I

⟨X,vα⟩2 +
1

L2

≤ 4

L
λmax(H

−1) +
1

L2

≤ 4

L
,

where the first inequality follows from the triangle inequality, the second comes from ∥wα∥F = 2 in Lemma A.6,
the third is an application of Lemma A.2, and the last comes from the fact that λmax(H

−1) = 1
2 from Lemma A.6.

Next, we can see that

∥E[T ⋆
α Tα]∥ =

∥∥∥∥∥ 1L∑
α∈I

⟨·,wα⟩⟨vα,vα⟩wα − 1

L2
I

∥∥∥∥∥
≤ max

∥X∥F=1

1

L

∑
α∈I

⟨X,wα⟩2⟨vα,vα⟩+
1

L2

≤ 1

2L
max

∥X∥F=1

∑
α∈I

⟨X,wα⟩2 +
1

L2

≤ 1

2L
λmax(H) +

1

L2

≤ 2n

L
,
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where the first inequality follows from the triangle inequality, the second comes from ∥vα∥F ≤ 1√
2
in Lemma A.6,

the third is an application of Lemma A.2, and the last comes from the fact thatλmax(H) = 2n from Lemma A.6.
As such, our variance estimate V0 = 2n

L . It follows that for any t < mV0

c = mn
L , we have the following result from

Theorem A.1:

P

(∥∥∥RΩ − m

L
I
∥∥∥ ≥ mn

L

√
8βn log(n)

3m

)
≤ 2n exp

(
−n2β log(n)

L

)
≤ 2n exp (−β log(n)) = 2n1−β ,

and the proof statement follows from this.

Lemma A.4 (λmax(H̃) bound). Let H̃ = [⟨PUwα,PUwβ⟩] ∈ RL×L, where U is the row/column space of the true
solution X = UDU⊤, which is rank-r, and where PU is the projection operator onto U . It follows that

λmax(H̃) ≤ νr.

Proof of Lemma A.4 . First, by coherence we have that

|⟨PUwα,PUwβ⟩| ≤ ∥PUwα∥F∥PUwβ∥F ≤ νr

2n
.

Next, as PU = UU⊤, for α ∩ β = ∅

⟨PUwα,PUwβ⟩ = Tr(wαPUPUwβ) = Tr(wβwαPU ) = Tr(0PU ) = 0,

as wαwβ = wβwα = 0, where 0 is the zero matrix. Thus H̃ is sparse, with each row having at most 2n − 3
non-zero entries. The result follows from a Gershgorin argument and the entrywise bound derived from the coherence
condition above.

Lemma A.5. For any X ∈ Rn×n, X = X⊤, and any wα ∈ {wβ}β∈I,

⟨PTX,wα⟩ = ⟨XPU ,PUwα⟩.

Additionally for ∥X∥F = 1,∑
α∈I

⟨XPU ,PUwα⟩2 ≤ max
∥X∥F=1

∑
α∈I

⟨XPU ,PUwα⟩2 ≤ λmax(H̃).

Proof of Lemma A.5. First, notice that ⟨XPU ,wα⟩ = ⟨PUX,wα⟩ due to cyclicity of the trace and symmetry of
X, PU , and wα. It follows then that

⟨PTX,wα⟩ = ⟨PUX +XPU − PUXPU ,wα⟩
= 2⟨PUX,wα⟩ − ⟨PUXPU ,wα⟩
= ⟨PUX,wα⟩+ ⟨PUX − PUXPU ,wα⟩
= ⟨PUX,wα⟩+ ⟨PUXPU⊥ ,wα⟩
= ⟨X,PUwα⟩+ ⟨XPU⊥ ,PUwα⟩
= ⟨X −XPU⊥ ,PUwα⟩
= ⟨XPU ,PUwα⟩.

The second statement follows from Lemma A.2 and the fact that PU is an orthogonal projection operator. This
concludes the proof.

Lemma A.6 (Eigenvalues of H and H−1, entries of H−1, and spectral norms of wα and vα [52]). Let H =
[wα,wβ] ∈ RL×L be the Gram matrix for {wα}, and let H−1 be its inverse. Then

λmax(H) = 2n, λmax(H
−1) =

1

2
.

Additionally,

Hαβ =


1
n2 α ∩ β = ∅;
− 1

2n + 1
n2 α ∩ β ̸= ∅,α ̸= β;

1
2

(
1− 1

n + 2
n2

)
α = β.

Finally,

∥wα∥ = 2, ∥vα∥ =
1

2
.
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Lemma A.7. Let {vα}α∈I be the dual basis to {wα}α∈I. It follows that∑
α∈I

v2
α =

n2 − 2n+ 2

4n
J .

Proof of Lemma A.7. Recall that vα = − 1
2

(
ab⊤ + ba⊤) where a = ei − 1

n1 and b = ej − 1
n1 for α = (i, j). It

follows that
4v2

α = ab⊤ab⊤ + ab⊤ba⊤ + ba⊤ab⊤ + ba⊤ba⊤,

and as b⊤b = a⊤a = n−1
n and a⊤b = − 1

n , we see that

4v2
α =

n− 1

n

[(
eii −

1

n
ei1

⊤ − 1

n
1e⊤i +

1

n2
11⊤

)
+

(
ejj −

1

n
ej1

⊤ − 1

n
1e⊤j +

1

n2
11⊤

)]
− 1

n

[(
eij −

1

n
ei1

⊤ − 1

n
1ej +

1

n2
11⊤

)
+

(
eji −

1

n
ej1

⊤ − 1

n
1e⊤i +

1

n2
11⊤

)]
=

n− 1

n
(eii + ejj) +

2− n

n3

(
ei1

⊤ + 1e⊤i + ej1
⊤ + 1e⊤j

)
+

2(n− 2)

n2
11⊤ − 1

n
(eij + eji) .

So it follows that∑
α∈I

4v2
α =

(n− 1)2

n
I +

2(2− n)(n− 1)

n2
11⊤ +

(n− 1)(n− 2)

n2
11⊤ − 1

n
(11⊤ − I),

=
n2 − 2n+ 2

n
I − n2 − 2n+ 2

n2
11⊤,

yielding the desired result as J = I − 1
n11

⊤.

B Restricted Isometry Results

As RIP and its variants are critical to the analysis of Algorithm 2, this section is dedicated to the proofs of RIP and
similar results.

B.1 Proof of Theorem 5.4

Proof. First, notice that for any dual basis pair {wα}α∈I and {vα}α∈I, we can decompose any X ∈ S as

X =
∑
α∈I

⟨X,wα⟩vα.

It follows then that
E (RΩ) =

m

L
I,

where |Ω| = m and I is the identity operator on S. From this, we can see that

PTX =
∑
α∈I

⟨X,PTwα⟩vα, RΩPTX =
∑
α∈Ω

⟨X,PTwα⟩vα, PTRΩPTX =
∑
α∈Ω

⟨X,PTwα⟩PTvα.

Therefore it follows that E(PTRΩPT) =
m
LPT. We can now use Theorem A.1 to bound the probability that PTRΩPT

deviates from its expected spectral norm. To do this, we first define an operator Tα = ⟨·,PTwα⟩PTvα − 1
LPT. First,

observe the following coherence conditions outlined in Assumption 5.1,

∥⟨·,PTwα⟩PTvα∥ ≤ ∥PTwα∥F ∥PTvα∥F ≤
√

νr

8n

√
νr

2n
≤ νr

2n
.

Additionally, E(Tα) = 1
LI. It follows then that

∥Tα∥ ≤ ∥⟨·,PTwα⟩PTvα∥+
1

L

≤ νr

2n
+

1

L

≤ νr

n
≤ ν2r2

n
=: c,
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as ν, r ≥ 1, which gives us our almost sure estimate on the spectral norm of each term Tα. Next, to estimate the
variance we notice first that

E (TαT ⋆
α) =

1

L

∑
α∈I

TαT ⋆
α =

1

L

∑
α∈I

⟨·,PTvα⟩⟨PTwα,PTwα⟩PTvα − 1

L2
PT,

E (T ⋆
αTα) =

1

L

∑
α∈I

T ⋆
α Tα =

1

L

∑
α∈I

⟨·,PTwα⟩⟨PTvα,PTvα⟩PTwα − 1

L2
PT.

To bound the maximum spectral norm of the above two terms, notice that for
∑

α∈I TαT ⋆
α ,∥∥∥∥∥ 1L∑

α∈I
TαT ⋆

α

∥∥∥∥∥ ≤ max
∥X∥F=1

1

L

∑
α∈I

⟨PTwα,PTwα⟩⟨X,PTvα⟩2 +
1

L2

≤ max
∥X∥F=1

νr

2nL

∑
α∈I

⟨X,PTvα⟩2 +
1

L2

= max
X∈T,∥X∥F=1

νr

2nL

∑
α∈I

⟨X,vα⟩2 +
1

L2

≤ max
∥X∥F=1

νr

2nL

∑
α∈I

⟨X,vα⟩2 +
1

L2

=
νr

2nL
λmax(H

−1) +
1

L2

=
νr

4nL
,

where the first inequality follows from the triangle inequality, the second comes from the coherence conditions in
Assumption 5.1, the third line comes from the self-adjointness of PT, the fourth comes from the definition of the
max, the fifth comes from an application of Lemma A.2, and the sixth comes from the λmax(H

−1) bound from
Lemma A.6. Next for

∑
α∈I T ⋆

αTα, we have that∥∥∥∥∥ 1L∑
α∈I

T ⋆
αTα

∥∥∥∥∥ ≤ max
∥X∥F=1

1

L

∑
α∈I

⟨PTvα,PTvα⟩⟨X,PTwα⟩2 +
1

L2

≤ max
∥X∥F=1

νr

2nL

∑
α∈I

⟨X,PTwα⟩2 +
1

L2

= max
Z=XPU ,∥X∥F=1

νr

2nL

∑
α∈I

⟨Z,PUwα⟩2 +
1

L2

≤ max
∥X∥F=1

νr

2nL

∑
α∈I

⟨X,PUwα⟩2 +
1

L2

=
νr

2nL
λmax(H̃) +

1

L2

≤ ν2r2

2nL
,

where the first inequality follows from the triangle inequality, the second comes from the coherence conditions in
Assumption 5.1, the third line comes from the fact that for any symmetric Y ∈ Rn×n, ⟨PTY ,wα⟩ = ⟨Y PU ,PUwα⟩
from Lemma A.5, the fourth comes from the definition of the max, the fifth comes from an application of Lemma A.2,
and the sixth comes from the bound on λmax(H̃) in Lemma A.4.

As the latter term is larger, we get a variance estimate V0 = ν2r2

nL . Now, for t < mV0

c = m
L , we can use (22). It

follows that for m ≥ 8
3βν

2r2n log(n),

P

(∥∥∥PTRΩPT − m

L
PT

∥∥∥ ≥ m

L

√
8βν2r2n log(n)

3m

)
≤ 2n exp (−β log(n)) = 2n1−β ,

yielding the desired result.
Additionally, as E(R⋆

Ω) =
m
L I, the same proof can be repeated to show RIP for R⋆

Ω with the same constants
provided.
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The proof of RIP for RΩ allows us to define a neighborhood around the ground truth solution where a slightly
weakened version of RIP holds. First, however, we will introduce some technical lemmas:

Lemma B.1 (Spectral norm bounds for PTRΩ and RΩPT). Let X be a ν-incoherent rank-r ground truth matrix.
For m ≥ 16

3 νrn log(n), both results hold, each with probability 1− 2n1−β:

∥RΩPT∥ ≤ m

L
+

m
√
n

L

√
8βνrn log(n)

3m
and ∥PTRΩ∥ ≤ m

L
+

4m
√
n

L

√
βνrn log(n)

3m
.

Proof of B.1. We will start by proving the bound for ∥RΩPT∥.
First, notice that

∥RΩPT∥ ≤
∥∥∥RΩPT − m

L
PT

∥∥∥+ m

L
,

following from the triangle inequality, and notice that the middle term can be decomposed as the sum of i.i.d.
operators as follows. Let Tα = ⟨·,PTwα⟩vα − 1

LPT. Much in the same vein as in Theorem 5.4 and Lemmas B.4 and
5.6, we will use Theorem A.1 to prove a concentration result. For this, we must get a spectral norm and variance
estimate.

For the spectral norm estimate, notice that

∥Tα∥ =

∥∥∥∥⟨·,PTwα⟩vα − 1

L
PT

∥∥∥∥
≤ ∥PTwα∥F∥vα∥F +

1

L

≤
√

νr

2n
+

1

L

≤ 2νr√
n

=: c.

To get the variance bounds, notice that

∥E[TαT ⋆
α ]∥ =

∥∥∥∥∥ 1L∑
α∈I

⟨·,vα⟩⟨PTwα,PTwα⟩vα − 1

L2
PT

∥∥∥∥∥
≤ νr

2nL
λmax(H

−1) +
1

L2

≤ νr

nL
,

where the first inequality follows from Assumption 5.1, the triangle inequality, and Lemma A.2. For the other term,
we see that

∥E[T ⋆
α Tα]∥ =

∥∥∥∥∥ 1L∑
α∈I

⟨·,PTwα⟩⟨vα,vα⟩PTwα − 1

L2
PT

∥∥∥∥∥
≤

∥∥∥∥∥ 1L∑
α∈I

⟨·,PTwα⟩⟨vα,vα⟩PTwα

∥∥∥∥∥+ 1

L2

≤ 1

L2
+

1

2L
max

∥X∥F=1

∑
α∈I

⟨X,PTwα⟩2

≤ 1

L2
+

1

2L
max

∥X∥F=1

∑
α∈I

⟨X,PUwα⟩2

≤ 1

L2
+

1

2L
λmax(H̃)

≤ 1

L2
+

νr

2L

≤ νr

L
,
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where the third inequality follows from ∥vα∥F < 1, the fourth inequality follows from Lemma A.5, and fifth inequality
from Lemma A.4. As this latter term is the larger of the two variance terms, we set V = νrm

L as our variance
estimate. This allows us to state the following result using Theorem A.1 for m ≥ 8

3νrβn log(n):

P

(∥∥∥RΩPT − m

L
PT

∥∥∥ ≥ m
√
n

L

√
8βνrn log(n)

3m

)
≤ 2n exp (−β log(n)) = 2n1−β ,

giving a bound on RΩPT of

∥RΩPT∥ ≤ m

L
+

m
√
n

L

√
8βνrn log(n)

3m
,

with probability at least 1− 2n1−β .
The next step is to produce a similar bound for ∥PTRΩ∥. The analysis is much the same, with c = 2νr√

n
and

V = 2νr
L . Following the same steps, we see that for m ≥ 16

3 νrβn log(n),

∥PTRΩ∥ ≤ m

L
+

4m
√
n

L

√
βνrn log(n)

3m
,

with probability at least 1− 2n1−β .

Lemma B.2 (Spectral Bound on PTl
RΩ). Assume that

∥RΩ∥ ≤ m

L
+ 4

√
8m log(n)

3n
and ∥PTRΩ∥ ≤ m

L
+

4m
√
n

L

√
βνrn log(n)

3m
,

Then

∥PTl
RΩ∥ ≤

(
m

L
+ 4

√
8m log(n)

n

)
2∥Xl −X∥F
σmin(X)

+
m

L
+

4m
√
n

L

√
βνrn log(n)

3m
.

Proof of B.2. This result follows from direct computation, as

∥PTl
RΩ∥ = ∥PTl

RΩ − PTRΩ + PTRΩ∥
= ∥(PTl

− PT)RΩ + PTRΩ∥
≤ ∥RΩ∥∥PTl

− PT∥+ ∥PTRΩ∥

≤

(
m

L
+ 4

√
8m log(n)

n

)
2∥Xl −X∥F
σmin(X)

+
m

L
+

4m
√
n

L

√
βνrn log(n)

3m
,

where the second inequality follows from Lemma E.1 and the assumptions of this lemma. This concludes the
proof.

Lemma B.3 (RIP in a Local Neighborhood). Assume∥∥∥∥ LmPTRΩPT − PT

∥∥∥∥ ≤ ε0 < 1, (23)

∥Xl −X∥F
σmin(X)

≤
√
mε0

16n5/4
√
βνr log n

, ∥RΩ∥ ≤ m

L
+ 4

√
8m log(n)

n
, (24)

∥RΩPT∥ ≤ m

L
+

m
√
n

L

√
8βνrn log(n)

3m
, and ∥PTRΩ∥ ≤ m

L
+

4m
√
n

L

√
βνrn log(n)

3m
. (25)

Then ∥∥∥∥PTl
− L

m
PTl

RΩPTl

∥∥∥∥ ≤ 4ε0.
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Proof. First, notice that∥∥∥∥PTl
− L

m
PTl

RΩPTl

∥∥∥∥ ≤ ∥PTl
− PT∥+

L

m
∥PTl

RΩPTl
− PTl

RΩPT∥

+
L

m
∥PTl

RΩPT − PTRΩPT∥+
∥∥∥∥PT − L

m
PTRΩPT

∥∥∥∥
≤ ∥PTl

− PT∥+
L

m
∥PTl

RΩ∥∥PTl
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+
L

m
∥RΩPT∥∥PTl
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∥∥∥∥
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(
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L
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∥PTl

RΩ∥+
L

m
∥RΩPT∥

)
+

∥∥∥∥PT − L

m
PTRΩPT

∥∥∥∥ ,
using the triangle inequality and the results gathered in Lemma E.1.

We can now bound each of these terms using the assumptions and prior lemmas. First, notice that

2L∥Xl −X∥F
mσmin(X)

∥RΩPT∥ ≤ 2∥Xl −X∥F
σmin(X)

+

√
32βνrn2 log(n)

3m

∥Xl −X∥F
σmin(X)

≤
√
mε0

8n5/4
√
βνr log n

+

√
βνrn2 log(n)

24m

√
mε0
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√
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√
m
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8
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√
24

≤
√
L

n5/4

ε0
8

+
ε0√
24

≤ ε0
8

+
ε0√
24

≤ ε0,

where the first inequality comes from the assumption on ∥RΩPT∥ in (25), the second inequality comes from
the local neighborhood assumption in (24), the third inequality comes from term cancellation and the fact that
β, ν, r, log(n) ≥ 1, the fourth inequality comes from the fact that m ≤ L, the fifth inequality comes from the fact
that L

n2 < 1, and the last inequality is a numerical inequality on the fractions.
Next, notice that the conditions of Lemma B.2 are satisfied, so

2L∥Xl −X∥F
mσmin(X)

∥PTl
RΩ∥

≤
(
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√
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√
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)

≤
(
2∥Xl −X∥F
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)2
(
1 +

2n2
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√
8m log(n)
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)
+
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(
1 + 4

√
βνrn2 log(n)
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)
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+
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√
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+
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√
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64

+
ε0
8

+

(
mε20
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√
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√
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=
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64

+
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+

√
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+
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where the first inequality follows from the assumptions on ∥PTRΩ∥ in (25), the second inequality follows from

rearrangement of terms and the fact that L
m ≤ n2

m , the third inequality comes from the local neighborhood assumption

in (24), the fourth inequality comes from the fact that m
n2 ≤ L

n2 < 1 along with β, ν, r, log(n) ≥ 1, the fifth line comes
from multiplying out terms, the sixth inequality again comes from a bound on m

n2 amongst other simplifications, and
the last line comes from a numerical inequality about the fractions coupled with the fact that ε0 < 1 from (23), so
ε20 ≤ ε0. The desired statement follows from here, thus concluding the proof.

For Algorithm 3, we will need what the authors of [36] call an asymmetric form of RIP for RΩ. The statement
and proof of this are below:

Lemma B.4 (Asymmetric RIP of RΩ). Let Xl = UlDlU
⊤
l and X = UDU⊤ be two fixed rank-r matrices. Assume

∥PUwα∥F ≤
√

νr

2n
, ∥PUvα∥F ≤

√
νr

2n
, ∥PUl

wα∥F ≤
√

νr

2n
, and ∥PUl

vα∥F ≤
√

νr

2n
,

for α ∈ I. Let |Ω| = m. For m ≥ 4
3βν

2r2n log(n), with probability at least 1 − 2n1−β for β > 1, the following
estimate holds: ∥∥∥∥ LmPTl

RΩ(PU − PUl
)− PTl

(PU − PUl
)

∥∥∥∥ ≤
√

4βν2r2n log(n)

3m
. (26)

Proof of Lemma B.4. First, note that for all Z ∈ Rn×n,

(PU − PUl
)Z =

∑
α∈I

⟨(PU − PUl
)Z,wα⟩vα

=
∑
α∈I

⟨Z, (PU − PUl
)wα⟩vα,

so it follows that
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)wα⟩vα,

and subsequently

PTl
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⟨Z, (PU − PUl
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vα.

We define Kα(·) = PTl
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)(wα)(·) = ⟨·, (PU − PUl
)wα⟩PTl

vα. It follows that PTl
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)wα. Additionally,
note that E[Kα] = 1

LPTl
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) and that E[K⋆
α] = 1
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)PTl

. We note that the variance term

E
[(
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LPTl
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)
) (

Kα − 1
LPTl
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)⋆]

can be bounded as follows:
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A similar computation holds for E
[(
Kα − 1

LPTl
(PU − PUl

)
)⋆ (Kα − 1

LPTl
(PU − PUl

)
)]
, indicating that it suffices

to compute an upper bound on the following terms in order to leverage Theorem A.1:∥∥∥∥Kα − 1

L
PTl

(PU − PUl
)

∥∥∥∥ ≤ c,
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For the first term, notice that

∥Kα∥ ≤ ∥(PU − PUl
)wα∥F∥PTl

vα∥F
≤ (∥PUwα∥F + ∥PUl

wα∥F)∥PTl
vα∥F

≤ νr

n
≤ ν2r2

n
.

So by the triangle inequality
∥∥Kα − 1

LPTl
(PU − PUl

)
∥∥ ≤ 2ν2r2

n =: c. For the second term, notice that
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As such,
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where H̃ l = [⟨w̃l
α, w̃

l
β⟩] ∈ RL×L. To bound this, notice that if α ∩ β = ∅,

⟨w̃l
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)2wβ⟩
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[
wα(PU − PUl

)2wβ

]
= Tr

[
wβwα(PU − PUl

)2
]

= 0,

therefore preserving the same sparsity structure as H̃. To bound the magnitude of the entries, we can see that

|⟨w̃l
α, w̃

l
β⟩| = |⟨wα, (PU − PUl

)2wβ⟩| = |⟨wα, (PU − PUPUl
− PUl
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)wβ⟩|

≤ |⟨PUwα,PUwβ⟩|+ |⟨PUwα,PUl
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giving us an upper bound on H̃ l of

λmax(H̃
l) ≤ 2νr

n
(2n− 3) ≤ 4νr.

This gives a bound of

∥E[KαK⋆
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Next, we can see that
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Now, it follows that ∥∥∥∥E[KαK⋆
α]−

1

L2
PTl

(PU − PUl
)2PTl

∥∥∥∥ ≤ 2ν2r2

nL
+

4

L2
≤ 4ν2r2

nL∥∥∥∥E[K⋆
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1

L2
(PU − PUl

)PTl
(PU − PUl
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∥∥∥∥ ≤ νr

nL
+

4

L2
≤ 2νr

nL
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so V0 := 4ν2r2

nL . Now, for t < mV0

c = 2m
L , the result follows from Theorem A.1 with t =

√
4βν2r2n log(n)

3m with

m ≥ 4
3ν

2r2n log(n).

C Proof of Local Convergence (Theorem 5.5)

In this section, we will use the properties proven thus far to provide proof of local convergence of Algorithm 2.
We begin with the following technical lemmas:

Lemma C.1 (Stepsize Bounds). Assume that ∥PTl
− L

mPTl
RΩPTl

∥ ≤ 4ε0 < 1. Then the stepsize αl in Algorithm 2
can be bounded by

L/m

1 + 4ε0
≤ αl =

∥PTGl∥2F
⟨PTl

Gl,RΩPTl
Gl⟩

≤ L/m

1− 4ε0
.

Proof of Lemma C.1. We will prove this by leveraging the local RIP assumption. Notice the following:

⟨PTl
Gl,RΩPTl

Gl⟩ = ⟨PTl
Gl,PTl

RΩPTl
Gl⟩

=
〈
PTl

Gl,PTl
RΩPTl

Gl −
m

L
PTl

Gl

〉
+

m

L
⟨PTGl,PTGl⟩.

We can now leverage the variational characterization of the spectral norm and local RIP, proven in Lemma B.3, to
bound the following:

−m

L
(4ε0)∥PTGl∥2F ≤

〈
PTl

Gl,PTl
RΩPTl

Gl −
m

L
PTl

Gl

〉
≤ m

L
(4ε0)∥PTGl∥2F.

As such, we can now bound the denominator as

m

L
(1− 4ε0)∥PTGl∥2F ≤ ⟨PTl

Gl,RΩPTl
Gl⟩ ≤

m

L
(1 + 4ε0)∥PTGl∥2F.

Rearrangement of this last expression yields the upper and lower bounds on the step size derived above. The
condition that 4ε0 < 1 is required to enforce the positivity of the step size, as negative step sizes cause divergence in
the contractive sequence. This is necessary as RΩ is not a self-adjoint positive semi-definite operator. This concludes
the proof.

Lemma C.2 (I1 Bound). Assume
∥∥PTl

− L
mPTl

RΩPTl

∥∥ ≤ 4ε0 and αl can be bounded as in Lemma C.1. Then the
spectral norm of PTl

− αlPTl
RΩPTl

can be bounded as

∥PTl
− αlPTl

RΩPTl
∥ ≤ 8ε0

1− 4ε0
. (27)

Proof of Lemma C.2. From direct calculation, it follows that

∥PTl
− αlPTl

RΩPTl
∥ ≤

∥∥∥∥PTl
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m
PTl

RΩPTl
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∥
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− m

L
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∥∥∥+ m

L
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∥
)

≤ 4ε0 +

(
L/m

1− 4ε0
− L/m(1− 4ε0)

1− 4ε0

)(
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m

L
+

m

L

)
≤ 4ε0 +

4ε0
1− 4ε0

(1 + 4ε0)

=
8ε0

1− 4ε0
.

This finishes the proof.

We can now prove Theorem 5.5.
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C.1 Proof of Theorem 5.5

Proof. First, it follows that

∥Xl+1 −X∥F ≤ ∥Xl+1 −Wl∥F + ∥Wl −X∥F ≤ 2∥Wl −X∥F,

as Xl+1 is the best rank-r approximation of Wl. Plugging in Wl = Xl + αlPTl
Gl, we see that

∥Xl+1 −X∥F ≤ 2 ∥Xl + αlPTl
Gl −X∥F

= 2∥Xl −X − αlPTl
RΩ(Xl −X)∥F

≤ 2∥(PTl
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RΩPTl
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I1

+ 2∥(I − PTl
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I2

+ 2|αl|∥PTl
RΩ(I − PTl

)(Xl −X)∥F︸ ︷︷ ︸
I3

.

It remains to bound each term individually. Using Lemma C.2, we see that

I1 ≤ 16ε0
1− 4ε0

∥Xl −X∥F.

Next, notice that from Lemma E.1 and the fact that PTl
Xl = Xl,

I2 = 2∥(I − PTl
)Xl − (I − PTl

)X)∥F
= 2∥(I − PTl

)X∥F

≤ 2∥Xl −X∥2F
σmin(X)

≤
√
mε0

8n5/4
√
βνr log n

∥Xl −X∥F

≤ ε0∥Xl −X∥F

≤ ε0
1− 4ε0

∥Xl −X∥F,

using Lemma E.1 and our initial assumption. Finally, we see that, following a similar argument as in the bound of
I2 and using Lemma B.2,

I3 ≤ 2|αl|∥PTl
RΩ∥∥(I − PTl

)X∥F

≤ 2L/m

1− 4ε0

[(
m

L
+ 4

√
8m log(n)

n

)
2∥Xl −X∥F
σmin(X)

+
m

L
+

4m
√
n

L

√
βνrn log(n)

3m

](
∥Xl −X∥F
σmin(X)

)
∥Xl −X∥F

≤ 1

1− 4ε0

(
ε20
128

+
ε0
16

+
ε20
32

+
ε0√
48

)
∥Xl −X∥F

≤ ε0
1− 4ε0

,

where the second to last inequality follows from the same analysis conducted in Lemma B.3, just divided by 2.
Collecting these results, we get

∥Xl+1 −X∥F ≤ 18ε0
1− 4ε0

∥Xl −X∥F.

By the assumption of the theorem, which holds for l = 0, and as we have a contractive sequence, it inductively
follows that the assumption holds for l ≥ 0. This concludes the proof.

D Initialization Results

Now that local convergence has been established, we can now prove quantitative guarantees for the initialization
methods provided in the main text.
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D.1 Proof of Lemma 5.6

We first start with a proof of the guarantee provided by one-step hard thresholding, detailed in Lemma 5.6:

Proof. First, notice that for W0 = L
mRΩ(X), we get

∥X0 −X∥ ≤ ∥W0 −X∥+ ∥W0 −X0∥
≤ 2 ∥W0 −X∥ ,

where the first inequality follows from the triangle inequality and the second inequality follows from the fact that
W0 is the best rank-r approximation of X0 by Eckart-Young-Mirsky [82]. We now need a bound for this last term.
Notice that W0 − X = L

m

∑
α⟨X,wα⟩vα − X is a sum of zero-mean i.i.d random matrices, opening up use of

Bernstein’s inequality. In order to use this, define Zα = L
m ⟨X,wα⟩vα − 1

mX. We need a bound on ∥Zα∥ and∥∥E[Zα]
2
∥∥. First, notice that
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m
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∥∥∥∥
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≤ 4L

m
∥X∥∞ +

n

m
∥X∥∞

≤ 5L

m
∥X∥∞ =: c,

as ∥vα∥ < 1 from Lemma A.6. Next, notice that

∥∥E[Z2
α]
∥∥ =

∥∥∥∥∥ L

m2

∑
α

⟨X,wα⟩2v2
α − 1

m2
X2

∥∥∥∥∥ .
As both these matrices are positive semi-definite, it follows that
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∥∥ ≤ max{
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∑
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α

∥∥ ,∥∥ 1
m2X
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It follows that ∥∥∥∥∥ L

m2

∑
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α
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16L
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)
.

Now, from Lemma A.7,
∑

α v2
α = n2−2n+2

4n J . It follows that λmax

(∑
α v2

α

)
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4n ≤ n
4 as J is an orthogonal

projection. Thus, ∥∥E (Z2
α

)∥∥ ≤ 5nL

m2
∥X∥2∞ =: V0.

Now to determine t, we note that

V

c
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∥X∥2∞

m

5L ∥X∥∞
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≥
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40βn3 log n
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for m ≥ 40
3 βn log n. It follows that

P

(
∥X0 −X∥ >

√
40βn3 log n

3m
∥X∥∞

)
≤ 2n exp (−β log(n))

= 2n1−β ,
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verifying the probabilistic bound. To complete the proof we use Assumption 5.2, and it follows that

∥X0 −X∥F ≤
√
2r∥X0 −X∥ ≤

√
320rβn3 log(n)

3m
∥X∥∞ ≤

√
320r2µ2

1n log(n)

3m
∥X∥,

thus concluding the proof.

Now, we will prove a technical lemma about Algorithm 4:

Lemma D.1 (Trimming Result). Let Zl = UlDlU
⊤
l be a rank-r matrix such that

∥Zl −X∥ ≤ σmin(X)

10
√
2

.

Then the matrix Ẑl returned by Algorithm 4 satisfies

∥PÛl
ei∥ ≤ 10

9

√
νr

128n
, ∥PÛl

wα∥F ≤ 10

9

√
νr

8n
, and ∥PÛl

vα∥F ≤ 10

9

√
νr

2n

and furthermore
∥Ẑl −X∥F ≤ 8κ∥Zl −X∥F

Proof of Lemma D.1. The proof of the first and fourth statements can be found in [36]. To see the second and third
statements, we can apply the same analysis as in Remark 2. This analysis is reproduced here for convenience. First,
notice that if ∥PÛl

eij∥2 ≤ 10
9

√
νr

128n , then by the triangle inequality

∥PÛl
wα∥2F ≤ 40

9
∥PUeij∥F ≤ 10

9

√
νr

8n
.

This validates the second statement. To see the third result, notice that

∥PÛl
vα∥F =

∥∥∥∥∥∥PÛl

∑
β∈I

Hαβwβ

∥∥∥∥∥∥
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wβ∥F

≤ 10

9

√
νr

8n

∑
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∣∣ ,

and from Lemma A.6, it follows that
∑

α∈I |Hαβ| ≤ 2, so the last statement follows.

D.2 Proof of Lemma 5.8

Proof. First, assume that at the l-th iteration of Algorithm 3,

∥Zl −X∥F ≤ σmax(X)

256κ2
.

This indicates that Ẑl is
100
81 -ν incoherent with respect to {wα}α∈I and that

∥Ẑl −X∥F ≤ 8κ∥Zl −X∥F.

Following a similar strategy as in the proof for Theorem 5.5, we can decompose the error at the l+ 1-th iteration
as follows:

∥Zl+1 −X∥F ≤ 2

∥∥∥∥(PT̂l
− L

m
PT̂l

RΩl+1
PT̂l

)(Ẑl −X)

∥∥∥∥
F︸ ︷︷ ︸

I4

+ 2
∥∥∥(I − PT̂l

)(Ẑl −X)
∥∥∥
F︸ ︷︷ ︸

I5

+ 2

∥∥∥∥ LmPT̂l
RΩl+1

(I − PT̂l
)(Ẑl −X)

∥∥∥∥
F︸ ︷︷ ︸

I6

.
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Now, as Ẑl and Ωl+1 are independent, we can use Theorem 5.4 to bound I4 as follows:

I4 ≤ 2

∥∥∥∥ LmPT̂l
RΩl+1

PT̂l
− PT̂l

∥∥∥∥ ∥Ẑl −X∥F

≤ 2

√
8(100ν/81)2r2βn log(n)

3m̂
∥Ẑl −X∥F

≤ 16κ

√
80000ν2r2βn log(n)

19683m̂
∥Zl −X∥F

≤ 32κ

√
ν2r2βn log(n)

m̂
∥Zl −X∥F,

with probability at least 1− 2n1−β as long as m̂ ≥ 4ν2r2βn log(n).
Next, we can bound I5 as follows:

I5 ≤ 2∥Ẑl −X∥2F
σmin(X)

≤ 128κ2∥Zl −X∥2F
σmin(X)

≤ 1

2
∥Zl −X∥F,

where the first inequality follows from Lemma E.1, the second inequality comes from Lemma D.1, and the last
inequality comes from the starting assumption.

For the final result, again recall that Ẑl and Ωl+1 are independent, and Ẑl is
100
81 -ν incoherent with respect to

{wα}α∈I. From Lemma B.4 and the new incoherence parameter, we have that∥∥∥∥ LmPT̂l
RΩl+1

PT̂l
(PU − PÛl

)− PT̂l
(PU − PÛl

)

∥∥∥∥ ≤
√

40000βν2r2n log(n)

19683m̂

≤
√

2βν2r2n log(n)

m̂
,

with probability at least 1− 2n1−β given m̂ ≥ 2βν2r2n log(n). Now, as

(I − PT̂l
)(Ẑl −X) = −(I − PT̂l

)(X)

= −X + ÛlÛ
⊤
l X +XÛlÛ

⊤
l − ÛlÛ

⊤
l XÛlÛ

⊤
l

= −UU⊤X + ÛlÛ
⊤
l X +UU⊤XÛlÛ

⊤
l − ÛlÛ

⊤
l XÛlÛ

⊤
l

= −(UU⊤ − ÛlÛ
⊤
l )X(I − ÛlÛ

⊤
l )

= (UU⊤ − ÛlÛ
⊤
l )(Ẑl −X)(I − ÛlÛ

⊤
l )

= (PU − PÛl
)(Ẑl −X)(I − PÛl

),

where the first line follows from the fact that PT̂l
Ẑl = Ẑl, the second line follows from the definition of PT̂l

, the

third line follows from the fact that UU⊤X = X, the fourth line is a rearrangement of terms, and the fifth line
follows from the fact that Ẑl(I − ÛlÛ

⊤
l ) = 0. It follows that

I6 = 2

∥∥∥∥ LmPT̂l
RΩl+1

(PU − PÛl
)(Ẑl −X)(I − PÛl

)

∥∥∥∥
F

= 2

∥∥∥∥∥∥∥
L

m
PT̂l

RΩl+1
(PU − PÛl

)(Ẑl −X)(I − PÛl
)− PT̂l

(PU − PÛl
)(Ẑl −X)(I − PÛl

)︸ ︷︷ ︸
=0

∥∥∥∥∥∥∥
F

≤ 2

∥∥∥∥ LmPT̂l
RΩl+1

(PU − PÛl
)− PT̂l

(PU − PÛl
)

∥∥∥∥ ∥∥∥(Ẑl −X)(I − PÛl
)
∥∥∥
F

≤ 2

∥∥∥∥ LmPT̂l
RΩl+1

(PU − PÛl
)− PT̂l

(PU − PÛl
)

∥∥∥∥ ∥∥∥Ẑl −X
∥∥∥
F

≤ 16κ

√
2βν2r2n log(n)

m̂
,
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where the first two lines follow from the computation above. Combining I4, I5, and I6 gives

∥Zl+1 −X∥F ≤

(
1

2
+ 64κ

√
βν2r2n log(n)

m̂

)
∥Zl −X∥F, (28)

with probability at least 1− 4n1−β . It follows that (28) is less than 5
6 for m̂ ≥ (192νrκ)2βn log(n).

Now, as Z0 = Hr

(
L
m̂RΩ0

(X)
)
, we can make ∥Z0 −X∥F ≤ σmin(X)

256κ2 using the one step hard thresholding result
from Lemma 5.6 for m̂ ≥ (2 × 105)κ6r2µ2

1n log(n), and the result follows from here. No attempts were made to
optimize the constants.

E Miscellaneous Results

Lemma E.1 (Bounds for Projections). Let Xl = UlDlU
⊤
l be a rank-r matrix and Tl be the tangent space of the

rank-r matrix manifold at Xl. Let X = UDU⊤ be another rank-r matrix, and T be the corresponding tangent space.
Then

∥UlU
⊤
l −UU⊤∥ ≤ ∥Xl −X∥F

σmin(X)
, ∥UlU

⊤
l −UU⊤∥F ≤

√
2∥Xl −X∥F
σmin(X)

∥(I − PTl
)X∥F ≤ ∥Xl −X∥2F

σmin(X)
, ∥PTl

− PT∥ ≤ 2∥Xl −X∥F
σmin(X)

.

Proof of Lemma E.1. See [36,87].
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